mindspore_gl.nn.AGNNConv
- class mindspore_gl.nn.AGNNConv(init_beta: float = 1.0, learn_beta: bool = True)[source]
Attention Based Graph Neural Network. From the paper Attention-based Graph Neural Network for Semi-Supervised Learning .
\[H^{l+1} = P H^{l}\]Computation of \(P\) is:
\[P_{ij} = \mathrm{softmax}_i ( \beta \cdot \cos(h_i^l, h_j^l))\]\(\beta\) is a single scalar parameter.
- Parameters
- Inputs:
x (Tensor): The input node features. The shape is \((N,*)\) where \(N\) is the number of nodes, and \(*\) could be of any shape.
g (Graph): The input graph.
- Outputs:
Tensor, output node features, where the shape should be the same as input ‘x’.
- Supported Platforms:
Ascend
GPU
Examples
>>> import mindspore as ms >>> from mindspore_gl.nn import AGNNConv >>> from mindspore_gl import GraphField >>> n_nodes = 4 >>> n_edges = 8 >>> feat_size = 16 >>> src_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 2, 3], ms.int32) >>> dst_idx = ms.Tensor([0, 1, 3, 1, 2, 3, 3, 2], ms.int32) >>> ones = ms.ops.Ones() >>> feat = ones((n_nodes, feat_size), ms.float32) >>> graph_field = GraphField(src_idx, dst_idx, n_nodes, n_edges) >>> conv = AGNNConv() >>> ret = conv(feat, *graph_field.get_graph()) >>> print(ret.shape) (4, 16)