mindspore_gl.dataloader
Dataloader for graph networks.
- class mindspore_gl.dataloader.Dataset[source]
Mappable Dataset Definition, an abstract class represent Dataset. All datasets should subclass it which represent a map relation from key to sample. All subclass should overwrite __getitem__, which implement fetch a sample given a key.
- Supported Platforms:
Ascend
GPU
Examples
>>> from mindspore_gl.dataloader import Dataset >>> class MyDataset(Dataset): >>> def __init__(self, *args, **kwargs): >>> ... >>> my_dataset = MyDataset()
- class mindspore_gl.dataloader.RandomBatchSampler(data_source, batch_size)[source]
Random Batched Node Sampler, random sample nodes form graph. The remained sample will be dropped.
- Parameters
data_source (Union[List, Tuple, Iterable]) – data source sample from.
batch_size (int) – number of sampling subgraphs per batch.
- Raises
TypeError – If batch_size is not a positive integer.
- Supported Platforms:
Ascend
GPU
Examples
>>> from mindspore_gl.dataloader.samplers import RandomBatchSampler >>> ds = list(range(10)) >>> sampler = RandomBatchSampler(ds, 3) >>> print(list(sampler)) # results will be random for suffle [[5, 9, 3], [4, 6, 7], [2, 8, 1]]
- mindspore_gl.dataloader.split_data(x, val_ratio=0.05, test_ratio=0.1, graph_type='undirected')[source]
Cut the training set into training set, validation set and test set according to the proportion of user input, and perform graph reconstruction on the training set, and then return.
- Parameters
x (mindspore_gl.dataloader.Dataset) – Graph Structured Dataset
val_ratio (float, optional) – Validation set proportion. Default: 0.05.
test_ratio (float, optional) – Test set proportion. Default: 0.1.
graph_type (str, optional) – The type of graph.’undirected’: undirected graph, ‘directed’: directed graph. Default: ‘undirected’.
- Returns
train (numpy.ndarray) - Train set positive examples, shape \((train\_len, 2)\) .
val (numpy.ndarray) - Validation set positive example, shape \((val\_len, 2)\) .
test (numpy.ndarray) - Test set positive examples, shape \((test\_len, 2)\) .
- Supported Platforms:
Ascend
GPU
Examples
>>> from mindspore_gl.dataloader import split_data >>> from mindspore_gl.dataset import CoraV2 >>> ds = CoraV2('data_path') >>> adj_coo, (train, val, test) = split_data(ds) >>> print(train.shape, val.shape, test.shape) (11684, 2) (263, 2) (527, 2)