mindspore_gl.utils
utils init
- mindspore_gl.utils.pca(matrix: np.ndarray, k: int = None, niter: int = 2, norm: bool = False)[source]
Perform a linear principal component analysis (PCA) on the matrix, and will return the first k dimensionality-reduced features.
- Parameters
matrix (ndarray) – Input features, shape is \((B, F)\).
k (int, optional) – target dimension for dimensionality reduction. Default: None.
niter (int, optional) – the number of subspace iterations to conduct and it must be a nonnegative integer. Default: 2.
norm (bool, optional) – Whether the output is normalized. Default: False.
- Returns
ndarray, Features after dimensionality reduction
- Raises
- Supported Platforms:
Ascend
GPU
Examples
>>> import numpy as np >>> from mindspore_gl.utils import pca >>> X = np.array([[-1, 1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) >>> data = pca(X, 1) >>> print(data) [[ 0.33702252] [ 2.22871406] [ 3.6021826 ] [-1.37346854] [-2.22871406] [-3.6021826 ]]