mindspore_gl.nn.APPNPConv
- class mindspore_gl.nn.APPNPConv(k: int, alpha: float, edge_drop=0.0)[source]
Approximate Personalization Propagation in Neural Prediction Layers. From the paper Predict then Propagate: Graph Neural Networks meet Personalized PageRank .
\[\begin{split}H^{0} = X \\ H^{l+1} = (1-\alpha)\left(\tilde{D}^{-1/2} \tilde{A} \tilde{D}^{-1/2} H^{l}\right) + \alpha H^{0}\end{split}\]Where \(\tilde{A}=A+I\)
- Parameters
- Inputs:
x (Tensor): The input node features. The shape is \((N,*)\) where \(N\) is the number of nodes, and \(*\) could be of any shape.
in_deg (Tensor): In degree for nodes. In degree for nodes. The shape is \((N, )\) where \(N\) is the number of nodes.
out_deg (Tensor): Out degree for nodes. Out degree for nodes. The shape is \((N, )\) where \(N\) is the number of nodes.
g (Graph): The input graph.
- Outputs:
Tensor, the output feature of shape \((N,*)\) where \(*\) should be the same as input shape.
- Raises
TypeError – If k is not an int.
TypeError – If alpha or edge_drop is not a float.
ValueError – If alpha is not in range [0.0, 1.0].
ValueError – If edge_drop is not in range [0.0, 1.0).
- Supported Platforms:
Ascend
GPU
Examples
>>> import mindspore as ms >>> from mindspore_gl.nn import APPNPConv >>> from mindspore_gl import GraphField >>> n_nodes = 4 >>> n_edges = 7 >>> feat_size = 4 >>> src_idx = ms.Tensor([0, 1, 1, 2, 2, 3, 3], ms.int32) >>> dst_idx = ms.Tensor([0, 0, 2, 1, 3, 0, 1], ms.int32) >>> ones = ms.ops.Ones() >>> feat = ones((n_nodes, feat_size), ms.float32) >>> graph_field = GraphField(src_idx, dst_idx, n_nodes, n_edges) >>> in_degree = ms.Tensor([3, 2, 1, 1], ms.int32) >>> out_degree = ms.Tensor([1, 2, 1, 2], ms.int32) >>> appnpconv = APPNPConv(k=3, alpha=0.5, edge_drop=1.0) >>> res = appnpconv(feat, in_degree, out_degree, *graph_field.get_graph()) >>> print(res.shape) (4, 4)