mindspore_gl.nn.STConv
- class mindspore_gl.nn.STConv(num_nodes: int, in_channels: int, hidden_channels: int, out_channels: int, kernel_size: int = 3, k: int = 3, bias: bool = True)[source]
Spatial-Temporal Graph Convolutional layer. From the paper A deep learning framework for traffic forecasting arXiv preprint arXiv:1709.04875, 2017. . The STGCN layer contains 2 temporal convolution layer and 1 graph convolution layer (ChebyNet).
- Parameters
num_nodes (int) – number of nodes.
in_channels (int) – Input node feature size.
hidden_channels (int) – hidden feature size.
out_channels (int) – Output node feature size.
kernel_size (int, optional) – Convolutional kernel size. Default:
3
.k (int, optional) – Chebyshev filter size. Default:
3
.bias (bool, optional) – Whether use bias. Default:
True
.
- Inputs:
x (Tensor) - The input node features. The shape is \((B, T, N, (D_{in}))\) where \(B\) is the size of batch, \(T\) is the number of input time steps, \(N\) is the number of nodes, \((D_{in})\) should be equal to in_channels in Args.
edge_weight (Tensor) - Edge weights. The shape is \((N\_e,)\) where \(N\_e\) is the number of edges.
g (Graph) - The input graph.
- Outputs:
Tensor, output node features with shape of \((B, D_{out}, N, T)\), where \(B\) is the size of batch, \((D_{out})\) should be the same as out_channels in Args, \(N\) is the number of nodes, \(T\) is the number of input time steps.
- Raises
- Supported Platforms:
Ascend
GPU
Examples
>>> import numpy as np >>> import mindspore as ms >>> from mindspore_gl.nn.temporal import STConv >>> from mindspore_gl import GraphField >>> from mindspore_gl.graph import norm >>> n_nodes = 4 >>> n_edges = 6 >>> feat_size = 2 >>> edge_attr = ms.Tensor([1, 1, 1, 1, 1, 1], ms.float32) >>> edge_index = ms.Tensor([[1, 1, 2, 2, 3, 3], >>> [0, 2, 1, 3, 0, 1]], ms.int32) >>> edge_index, edge_weight = norm(edge_index, n_nodes, edge_attr, 'sym') >>> edge_weight = ms.ops.Reshape()(edge_weight, ms.ops.Shape()(edge_weight) + (1,)) >>> batch_size = 2 >>> input_time_steps = 5 >>> feat = ms.Tensor(np.ones((batch_size, input_time_steps, n_nodes, feat_size)), ms.float32) >>> graph_field = GraphField(edge_index[0], edge_index[1], n_nodes, n_edges) >>> stconv = STConv(num_nodes=n_nodes, in_channels=feat_size, >>> hidden_channels=3, out_channels=2, >>> kernel_size=2, k=2) >>> out = stconv(feat, edge_weight, *graph_field.get_graph()) >>> print(out.shape) (2, 3, 4, 2)