mindspore_gl.nn.Set2Set
- class mindspore_gl.nn.Set2Set(input_size, num_iters, num_layers)[source]
Sequence to sequence for sets. From the paper Order Matters: Sequence to sequence for sets .
For each subgraph in the batched graph, compute:
\[ \begin{align}\begin{aligned}\begin{split}q_t = \mathrm{LSTM} (q^*_{t-1}) \\\end{split}\\\begin{split}\alpha_{i,t} = \mathrm{softmax}(x_i \cdot q_t) \\\end{split}\\\begin{split}r_t = \sum_{i=1}^N \alpha_{i,t} x_i\\\end{split}\\q^*_t = q_t \Vert r_t\end{aligned}\end{align} \]- Parameters
- Inputs:
x (Tensor) - The input node features to be updated. The shape is \((N, D)\) where \(N\) is the number of nodes, and \(D\) is the feature size of nodes.
g (BatchedGraph) - The input graph.
- Outputs:
x (Tensor) - The output representation for graphs. The shape is \((2, D_{out})\) where \(D_{out}\) is the double feature size of nodes
- Raises
TypeError – If input_size or num_iters or num_layers is not an int.
- Supported Platforms:
Ascend
GPU
Examples
>>> import numpy as np >>> import mindspore as ms >>> from mindspore_gl.nn import Set2Set >>> from mindspore_gl import BatchedGraphField >>> n_nodes = 7 >>> n_edges = 8 >>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6], ms.int32) >>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4], ms.int32) >>> ver_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1], ms.int32) >>> edge_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1, 1], ms.int32) >>> graph_mask = ms.Tensor([1, 1], ms.int32) >>> batched_graph_field = BatchedGraphField(src_idx, dst_idx, n_nodes, n_edges, ver_subgraph_idx, ... edge_subgraph_idx, graph_mask) >>> node_feat = np.random.random((n_nodes, 4)) >>> node_feat = ms.Tensor(node_feat, ms.float32) >>> net = Set2Set(4, 3, 2) >>> ret = net(node_feat, *batched_graph_field.get_batched_graph()) >>> print(ret.shape) (2, 8)