mindflow.common.get_warmup_cosine_annealing_lr

查看源文件
mindflow.common.get_warmup_cosine_annealing_lr(lr_init, steps_per_epoch, last_epoch, warmup_epochs=0, warmup_lr_init=0.0, eta_min=1e-06)[源代码]

基于余弦函数生成衰减学习率数组。如果指定了预热epoch,将通过线性方法对预热epoch进行预热。 对于第 i 步,计算余弦衰减的学习速率decayed_learning_rate[i]的表达式为:

decayed_learning_rate[i]=eta_min+0.5(lr_initeta_min)(1+cos(current_epochlast_epochπ))

其中 current_epoch=floor(isteps_per_epoch) .

如果指定了预热epoch,对于预热epoch的第 i 步,预热学习速率的计算表达式warmup_learning_rate[i]为:

warmup_learning_rate[i]=(lr_initwarmup_lr_init)i/warmup_steps+warmup_lr_init
参数:
  • lr_init (float) - 初始学习速率,正值。

  • steps_per_epoch (int) - 每个epoch的步数,正值。

  • last_epoch (int) - 总epoch的数量,正值。

  • warmup_epochs (int) - 热身epoch的数量,默认: 0

  • warmup_lr_init (float) - 热身初始学习速率,默认: 0.0

  • eta_min (float) - 学习速率最小值,默认: 1e-6

返回:

Numpy.array,学习率数组。

异常:
  • TypeError - 如果 lr_initwarmup_lr_init 不是float。

  • TypeError - 如果 steps_per_epochwarmup_epochslast_epoch 不是int。

支持平台:

Ascend GPU CPU

样例:

>>> from mindflow import get_warmup_cosine_annealing_lr
>>> lr_init = 0.001
>>> steps_per_epoch = 3
>>> last_epoch = 5
>>> warmup_epochs = 1
>>> lr = get_warmup_cosine_annealing_lr(lr_init, steps_per_epoch, last_epoch, warmup_epochs=warmup_epochs)
>>> print(lr)
[3.3333333e-04 6.6666666e-04 1.0000000e-03 9.0460398e-04 9.0460398e-04
9.0460398e-04 6.5485400e-04 6.5485400e-04 6.5485400e-04 3.4614600e-04
3.4614600e-04 3.4614600e-04 9.6396012e-05 9.6396012e-05 9.6396012e-05]