基于KNO求解一维Burgers
概述
计算流体力学是21世纪流体力学领域的重要技术之一,其通过使用数值方法在计算机中对流体力学的控制方程进行求解,从而实现流动的分析、预测和控制。传统的有限元法(finite element method,FEM)和有限差分法(finite difference method,FDM)常用于复杂的仿真流程(物理建模、网格划分、数值离散、迭代求解等)和较高的计算成本,往往效率低下。因此,借助AI提升流体仿真效率是十分必要的。
近年来,随着神经网络的迅猛发展,为科学计算提供了新的范式。经典的神经网络是在有限维度的空间进行映射,只能学习与特定离散化相关的解。与经典神经网络不同,傅里叶神经算子(Fourier Neural Operator,FNO)是一种能够学习无限维函数空间映射的新型深度学习架构。该架构可直接学习从任意函数参数到解的映射,用于解决一类偏微分方程的求解问题,具有更强的泛化能力。更多信息可参考Fourier Neural Operator for Parametric Partial Differential Equations。
但是这类神经算子在学习非线性PDE的长期行为时,变得不够准确和缺乏可解释性。库普曼神经算子(Koopman neural operator,KNO)通过构建方程解的非线性动力学系统,克服了这一问题。通过近似Koopman算子,一个控制动力学系统所有可能观测的无限维线性算子,作用于动力学系统的流映射,我们可以通过求解简单的线性预测问题等价地学习整个非线性PDE族的解。更多信息可参考:
“Koopman neural operator as a mesh-free solver of non-linear partial differential equations.” arXiv preprint arXiv:2301.10022 (2023).
“KoopmanLab: machine learning for solving complex physics equations.” arXiv preprint arXiv:2301.01104 (2023).
本案例教程介绍利用库普曼神经算子的1-d Burgers方程求解方法。
伯格斯方程(Burgers’ equation)
一维伯格斯方程(1-d Burgers’ equation)是一个非线性偏微分方程,具有广泛应用,包括一维粘性流体流动建模。它的形式如下:
其中\(u\)表示速度场,\(u_0\)表示初始条件,\(\nu\)表示粘度系数。
问题描述
本案例利用Koopman Neural Operator学习初始状态到下一时刻状态的映射,实现一维Burgers’方程的求解:
技术路径
MindSpore Flow求解该问题的具体流程如下:
创建数据集。
构建模型。
优化器与损失函数。
模型训练。
模型推理和可视化。
Koopman Neural Operator
Koopman Neural Operator模型构架如下图所示,包含上下两个主要分支和对应输出。图中Input表示初始涡度,上路分支通过Encoding Layer实现输入向量的高维映射,然后将映射结果作为Koopman Layer的输入,进行频域信息的非线性变换,最后由Decoding Layer将变换结果映射至最终的预测结果Prediction。同时,下路分支通过Encoding Layer实现输入向量的高维映射,然后通过Decoding Layer对输入进行重建。上下两个分支的Encoding Layer之间共享权重,Decoding Layer之间也共享权重。Prediction用于和Label计算预测误差,Reconstruction用于和Input计算重建误差。两个误差共同指导模型的梯度计算。
Encoding Layer、Koopman Layer、Decoding Layer以及两分支共同组成了Koopman Neural Operator。
Koopman Layer结构如虚线框所示,可重复堆叠。向量经过傅里叶变换后,再经过线性变换,过滤高频信息,然后进行傅里叶逆变换;输出结果与输入相加,最后通过激活函数,得到输出向量。
[9]:
import os
import time
import datetime
import numpy as np
import mindspore
from mindspore import nn, context, ops, Tensor, set_seed
from mindspore.nn.loss import MSELoss
from mindflow.cell import KNO1D
from mindflow.common import get_warmup_cosine_annealing_lr
from mindflow.utils import load_yaml_config
下述src
包可以在applications/data_driven/burgers/kno1d/src下载。
[10]:
from src.dataset import create_training_dataset
from src.trainer import BurgersWithLoss
from src.utils import visual
set_seed(0)
np.random.seed(0)
print("pid:", os.getpid())
print(datetime.datetime.now())
context.set_context(mode=context.GRAPH_MODE, device_target='Ascend', device_id=1)
use_ascend = context.get_context(attr_key='device_target') == "Ascend"
pid: 9647
2023-03-04 08:03:20.885806
从config中获得模型、数据、优化器的超参。
[11]:
config = load_yaml_config('kno1d.yaml')
data_params = config["data"]
model_params = config["model"]
optimizer_params = config["optimizer"]
创建数据集
下载训练与测试数据集: data_driven/burgers/dataset。
本案例根据Zongyi Li在 Fourier Neural Operator for Parametric Partial Differential Equations 一文中对数据集的设置生成训练数据集与测试数据集。具体设置如下: 基于周期性边界,生成满足如下分布的初始条件\(u_0(x)\):
本案例选取粘度系数\(\nu=0.1\),并使用分步法求解方程,其中热方程部分在傅里叶空间中精确求解,然后使用前向欧拉方法求解非线性部分。训练集样本量为1000个,测试集样本量为200个。
[12]:
# create training dataset
train_dataset = create_training_dataset(data_params, shuffle=True)
# create test dataset
eval_dataset = create_training_dataset(
data_params, shuffle=False, is_train=False)
Data preparation finished
input_path: (1000, 1024, 1)
label_path: (1000, 1024)
Data preparation finished
input_path: (200, 1024, 1)
label_path: (200, 1024)
构建模型
网络由1层共享的Encoding Layer、多层Koopman Layer以及1层共享的Decoding Layer叠加组成:
Encoding Layer对应样例代码中
KNO1D.enc
,将输出数据映射至高维;Koopman Layer对应样例代码中
KNO1D.koopman_layer
,本案例采用离散傅里叶变换实现时域与频域的转换;Decoding Layer对应代码中
KNO1D.dec
,获得最终的预测值。
基于上述网络结构,进行模型初始化,其中模型超参可在配置文件中修改。
[13]:
model = KNO1D(in_channels=data_params['in_channels'],
channels=model_params['channels'],
modes=model_params['modes'],
depths=model_params['depths'],
resolution=model_params['resolution']
)
model_params_list = []
for k, v in model_params.items():
model_params_list.append(f"{k}:{v}")
model_name = "_".join(model_params_list)
print(model_name)
name:KNO1D_channels:32_modes:64_depths:4_resolution:1024
优化器与损失函数
使用均方误差作为训练的损失函数:
[14]:
train_size = train_dataset.get_dataset_size()
eval_size = eval_dataset.get_dataset_size()
lr = get_warmup_cosine_annealing_lr(lr_init=optimizer_params["lr"],
last_epoch=optimizer_params["epochs"],
steps_per_epoch=train_size,
warmup_epochs=1)
optimizer = nn.AdamWeightDecay(model.trainable_params(),
learning_rate=Tensor(lr),
weight_decay=optimizer_params["weight_decay"])
model.set_train()
loss_fn = MSELoss()
if use_ascend:
from mindspore.amp import DynamicLossScaler, auto_mixed_precision, all_finite
loss_scaler = DynamicLossScaler(1024, 2, 100)
auto_mixed_precision(model, 'O3')
else:
loss_scaler = None
模型训练
使用MindSpore>= 2.0.0的版本,可以使用函数式编程范式训练神经网络。
[15]:
problem = BurgersWithLoss(model, data_params["out_channels"], loss_fn)
def forward_fn(inputs, labels):
loss, l_recons, l_pred = problem.get_loss(inputs, labels)
if use_ascend:
loss = loss_scaler.scale(loss)
return loss, l_recons, l_pred
grad_fn = ops.value_and_grad(forward_fn, None, optimizer.parameters, has_aux=True)
def train_step(inputs, labels):
(loss, l_recons, l_pred), grads = grad_fn(inputs, labels)
if use_ascend:
loss = loss_scaler.unscale(loss)
if all_finite(grads):
grads = loss_scaler.unscale(grads)
loss = ops.depend(loss, optimizer(grads))
return loss, l_recons, l_pred
def eval_step(inputs, labels):
return problem.get_rel_loss(inputs, labels)
train_sink = mindspore.data_sink(train_step, train_dataset, sink_size=1)
eval_sink = mindspore.data_sink(eval_step, eval_dataset, sink_size=1)
summary_dir = os.path.join(config["summary_dir"], model_name)
os.makedirs(summary_dir, exist_ok=True)
print(summary_dir)
for epoch in range(1, optimizer_params["epochs"] + 1):
time_beg = time.time()
l_recons_train = 0.0
l_pred_train = 0.0
for _ in range(train_size):
_, l_recons, l_pred = train_sink()
l_recons_train += l_recons.asnumpy()
l_pred_train += l_pred.asnumpy()
l_recons_train = l_recons_train / train_size
l_pred_train = l_pred_train / train_size
print(f"epoch: {epoch}, time cost: {(time.time() - time_beg):>8f},"
f" recons loss: {l_recons_train:>8f}, pred loss: {l_pred_train:>8f}")
if epoch % config['eval_interval'] == 0:
l_recons_eval = 0.0
l_pred_eval = 0.0
print("---------------------------start evaluation-------------------------")
for _ in range(eval_size):
l_recons, l_pred = eval_sink()
l_recons_eval += l_recons.asnumpy()
l_pred_eval += l_pred.asnumpy()
l_recons_eval = l_recons_eval / eval_size
l_pred_eval = l_pred_eval / eval_size
print(f'Eval epoch: {epoch}, recons loss: {l_recons_eval},'
f' relative pred loss: {l_pred_eval}')
print("---------------------------end evaluation---------------------------")
mindspore.save_checkpoint(model, ckpt_file_name=summary_dir + '/save_model.ckpt')
./summary_dir/name:KNO1D_channels:32_modes:64_depths:4_resolution:1024
epoch: 1, time cost: 18.375901, recons loss: 0.295517, pred loss: 0.085093
epoch: 2, time cost: 2.577698, recons loss: 0.161718, pred loss: 0.002227
epoch: 3, time cost: 2.564470, recons loss: 0.027144, pred loss: 0.000992
epoch: 4, time cost: 2.547690, recons loss: 0.000782, pred loss: 0.000511
epoch: 5, time cost: 2.532924, recons loss: 0.000057, pred loss: 0.000279
epoch: 6, time cost: 2.536904, recons loss: 0.000048, pred loss: 0.000241
epoch: 7, time cost: 2.527330, recons loss: 0.000048, pred loss: 0.000213
epoch: 8, time cost: 2.536032, recons loss: 0.000048, pred loss: 0.000227
epoch: 9, time cost: 2.462490, recons loss: 0.000048, pred loss: 0.000230
epoch: 10, time cost: 2.564090, recons loss: 0.000049, pred loss: 0.000229
---------------------------start evaluation-------------------------
Eval epoch: 10, recons loss: 4.7733558130858e-05, relative pred loss: 0.01156728882342577
---------------------------end evaluation---------------------------
...
epoch: 91, time cost: 2.662080, recons loss: 0.000042, pred loss: 0.000006
epoch: 92, time cost: 2.604443, recons loss: 0.000042, pred loss: 0.000007
epoch: 93, time cost: 2.576527, recons loss: 0.000042, pred loss: 0.000006
epoch: 94, time cost: 2.621569, recons loss: 0.000042, pred loss: 0.000006
epoch: 95, time cost: 2.578712, recons loss: 0.000042, pred loss: 0.000006
epoch: 96, time cost: 2.607216, recons loss: 0.000042, pred loss: 0.000006
epoch: 97, time cost: 2.588060, recons loss: 0.000042, pred loss: 0.000006
epoch: 98, time cost: 2.911451, recons loss: 0.000042, pred loss: 0.000006
epoch: 99, time cost: 2.542502, recons loss: 0.000042, pred loss: 0.000006
epoch: 100, time cost: 2.514851, recons loss: 0.000042, pred loss: 0.000006
---------------------------start evaluation-------------------------
Eval epoch: 100, recons loss: 4.17057997037773e-05, relative pred loss: 0.004054672718048095
---------------------------end evaluation---------------------------
模型推理和可视化
取6个样本做连续10步预测,并可视化。
[16]:
# Infer and plot some data.
inputs = np.load(os.path.join(data_params["path"], "test/inputs.npy")) # (200,1024,1)
problem = BurgersWithLoss(model, 10, loss_fn)
visual(problem, inputs)