文档反馈

问题文档片段

问题文档片段包含公式时,显示为空格。

提交类型
issue

有点复杂...

找人问问吧。

请选择提交类型

问题类型
规范和低错类

- 规范和低错类:

- 错别字或拼写错误,标点符号使用错误、公式错误或显示异常。

- 链接错误、空单元格、格式错误。

- 英文中包含中文字符。

- 界面和描述不一致,但不影响操作。

- 表述不通顺,但不影响理解。

- 版本号不匹配:如软件包名称、界面版本号。

易用性

- 易用性:

- 关键步骤错误或缺失,无法指导用户完成任务。

- 缺少主要功能描述、关键词解释、必要前提条件、注意事项等。

- 描述内容存在歧义指代不明、上下文矛盾。

- 逻辑不清晰,该分类、分项、分步骤的没有给出。

正确性

- 正确性:

- 技术原理、功能、支持平台、参数类型、异常报错等描述和软件实现不一致。

- 原理图、架构图等存在错误。

- 命令、命令参数等错误。

- 代码片段错误。

- 命令无法完成对应功能。

- 界面错误,无法指导操作。

- 代码样例运行报错、运行结果不符。

风险提示

- 风险提示:

- 对重要数据或系统存在风险的操作,缺少安全提示。

内容合规

- 内容合规:

- 违反法律法规,涉及政治、领土主权等敏感词。

- 内容侵权。

请选择问题类型

问题描述

点击输入详细问题描述,以帮助我们快速定位问题。

mindspore.ops.sort

mindspore.ops.sort(input_x, axis=- 1, descending=False)[源代码]

按指定顺序对输入Tensor的指定维上的元素进行排序。

参数:
  • input_x (Tensor) - 进行排序的Tensor,shape为 (N,) ,其中 表示任意数量的的额外维度。

  • axis (int,可选) - 进行排序的维度。默认值:-1。

  • descending (bool,可选) - 按降序还是升序。如果为True,则元素按降序排列,否则按升序排列。默认值:False。

警告

目前能良好支持的数据类型有:Float16、UInt8、Int8、Int16、Int32、Int64。如果使用Float32,可能产生精度误差。

返回:
  • y1 (Tensor) - 排序后的值,其shape和数据类型与输入一致。

  • y2 (Tensor) - 返回值在原输入Tensor里对应的索引,数据类型为int32。

异常:
  • TypeError - axis 不是int类型。

  • TypeError - descending 不是bool类型。

  • TypeError - input_x 不是Float16、Float32、UInt8、Int8、Int16、Int32或Int64。

  • ValueError - axis 不在[-len(input_x.shape), len(input_x.shape))范围内。

支持平台:

Ascend GPU CPU

样例:

>>> x = Tensor(np.array([[8, 2, 1], [5, 9, 3], [4, 6, 7]]), mindspore.float16)
>>> output = ops.sort(x)
>>> # The output below is based on the Ascend platform.
>>> print(output)
(Tensor(shape=[3, 3], dtype=Float16, value=
[[ 1.0000e+00,  2.0000e+00,  8.0000e+00],
[ 3.0000e+00,  5.0000e+00,  9.0000e+00],
[ 4.0000e+00,  6.0000e+00,  7.0000e+00]]), Tensor(shape=[3, 3], dtype=Int32, value=
[[2, 1, 0],
[2, 0, 1],
[0, 1, 2]]))