mindspore.ops.tensor_scatter_min

mindspore.ops.tensor_scatter_min(input_x, indices, updates)[源代码]

根据指定的更新值和输入索引,通过最小值运算,将结果赋值到输出Tensor中。

索引的最后一个轴是每个索引向量的深度。对于每个索引向量, updates 中必须有相应的值。 updates 的shape应该等于 input_x[indices] 的shape。有关更多详细信息,请参见下方样例。

说明

如果 indices 的某些值超出范围,则相应的 updates 不会更新为 input_x ,而不是抛出索引错误。

参数:
  • input_x (Tensor) - 输入Tensor。 input_x 的维度必须不小于 indices.shape[-1]

  • indices (Tensor) - 输入Tensor的索引,数据类型为int32或int64。其rank至少为2。

  • updates (Tensor) - 指定与 input_x 取最小值操作的Tensor,其数据类型与输入相同。 updates.shape 应该等于 indices.shape[:-1] + input_x.shape[indices.shape[-1]:]

返回:

Tensor,shape和数据类型与输入 input_x 相同。

异常:
  • TypeError - indices 的数据类型既不是int32,也不是int64。

  • ValueError - input_x 的shape长度小于 indices 的shape的最后一个维度。

  • RuntimeError - indices 超出了 input_x 的索引范围。

支持平台:

Ascend GPU CPU

样例:

>>> import mindspore
>>> import numpy as np
>>> from mindspore import Tensor
>>> from mindspore import ops
>>> input_x = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]), mindspore.float32)
>>> indices = Tensor(np.array([[0, 0], [0, 0]]), mindspore.int32)
>>> updates = Tensor(np.array([1.0, 2.2]), mindspore.float32)
>>> output = ops.tensor_scatter_min(input_x, indices, updates)
>>> print(output)
[[ -0.1  0.3  3.6]
[ 0.4  0.5 -3.2]]