mindspore.ops.MatrixDiagV3

class mindspore.ops.MatrixDiagV3(align='RIGHT_LEFT')[源代码]

构造以输入Tensor为对角线的矩阵。

警告

这是一个实验性API,后续可能修改或删除。

更多参考详见 mindspore.ops.matrix_diag()

参数:
  • align (str, 可选) - 可选字符串,指定超对角线和次对角线的对齐方式。 可选值:”RIGHT_LEFT”、”LEFT_RIGHT”、”LEFT_LEFT”、”RIGHT_RIGHT”。 默认值:”RIGHT_LEFT”。

    • “RIGHT_LEFT”表示将超对角线与右侧对齐(左侧填充行),将次对角线与左侧对齐(右侧填充行)。

    • “LEFT_RIGHT”表示将超对角线与左侧对齐(右侧填充行),将次对角线与右侧对齐(左侧填充行)。

    • “LEFT_LEFT”表示将超对角线和次对角线均与左侧对齐(右侧填充行)。

    • “RIGHT_RIGHT”表示将超对角线与次对角线均右侧对齐(左侧填充行)。

输入:
  • x (Tensor) - 对角线Tensor。

  • k (Union[int, Tensor], 可选) - 对角线偏移。int32类型的Tensor。正值表示超对角线,0表示主对角线,负值表示次对角线。k可以是单个整数(对于单个对角线)或一对整数,指定矩阵带的上界和下界,且k[0]不得大于k[1]。该值必须在必须在(-num_rows,num_cols)中。默认值:0。

  • num_rows (Union[int, Tensor], 可选) - 输出Tensor的行数。int32类型的单值Tensor,若该值为-1,则表示输出Tensor的最内层矩阵是一个方阵,实际行数将由其他输入推导, 即 \(num\_rows = x.shape[-1] - min(k[1], 0)\) ; 否则,改值必须大于或等于 \(x.shape[-1] - min(k[1], 0)\) 。默认值:-1。

  • num_cols (Union[int, Tensor], 可选) - 输出Tensor的列数。int32类型的单值Tensor,若该值为-1,则表示输出Tensor的最内层矩阵是一个方阵,实际列数将由其他输入推导,即 \(num\_cols = x.shape[-1] + max(k[0], 0)\) ; 否则,改值必须大于或等于 \(x.shape[-1] - min(k[1], 0)\) 。默认值:-1。

  • padding_value (Union[int, float, Tensor], 可选) - 填充对角线带外区域的数值,是一个与 x 相同的数据类型的单值Tensor。默认值:0。

输出:

Tensor,与 x 的类型相同。 设 x 有r维 \((I, J, ..., M, N)\) 。当只给出一条对角线(k是整数或k[0]==k[1])时,输出Tensor的维度是r + 1,具有shape \((I, J, ..., M, num_rows, num_cols)\) 。否则,输出Tensor的维度是r,具有shape \((I, J, ..., num_rows, num_cols)\)

支持平台:

Ascend GPU CPU

样例:

>>> x = Tensor(np.array([[8, 9, 0],
...                      [1, 2, 3],
...                      [0, 4, 5]]), mindspore.float32)
>>> k =Tensor(np.array([-1, 1]), mindspore.int32)
>>> num_rows = Tensor(np.array(3), mindspore.int32)
>>> num_cols = Tensor(np.array(3), mindspore.int32)
>>> padding_value = Tensor(np.array(11), mindspore.float32)
>>> matrix_diag_v3 = ops.MatrixDiagV3(align='LEFT_RIGHT')
>>> output = matrix_diag_v3(x, k, num_rows, num_cols, padding_value)
>>> print(output)
[[ 1.  8. 11.]
 [ 4.  2.  9.]
 [11.  5.  3.]]
>>> print(output.shape)
(3, 3)