mindspore.ops.Gather

class mindspore.ops.Gather(batch_dims=0)[源代码]

返回输入Tensor在指定 axisinput_indices 索引对应的元素组成的切片。

更多参考详见 mindspore.ops.gather()

参数:
  • batch_dims (int,可选) - 指定batch维的数量。它必须要小于或等于 input_indices 的rank。默认值: 0

输入:
  • input_params (Tensor) - 原始Tensor,shape为 \((x_1, x_2, ..., x_R)\)

  • input_indices (Tensor) - 要切片的索引Tensor,shape为 \((y_1, y_2, ..., y_S)\) 。指定原始Tensor中要切片的索引。数据类型必须是int32或int64。

  • axis (int) - 指定要切片的维度索引。

输出:

Tensor,shape为 \(input\_params.shape[:axis] + input\_indices.shape + input\_params.shape[axis + 1:]\)

支持平台:

Ascend GPU CPU

样例:

>>> # case1: input_indices is a Tensor with shape (5, ).
>>> input_params = Tensor(np.array([1, 2, 3, 4, 5, 6, 7]), mindspore.float32)
>>> input_indices = Tensor(np.array([0, 2, 4, 2, 6]), mindspore.int32)
>>> axis = 0
>>> output = ops.Gather()(input_params, input_indices, axis)
>>> print(output)
[1. 3. 5. 3. 7.]
>>> # case2: input_indices is a Tensor with shape (2, 2). When the input_params has one dimension,
the output shape is equal to the input_indices shape.
>>> input_indices = Tensor(np.array([[0, 2], [2, 6]]), mindspore.int32)
>>> axis = 0
>>> output = ops.Gather()(input_params, input_indices, axis)
>>> print(output)
[[ 1. 3.]
 [ 3. 7.]]
>>> # case3: input_indices is a Tensor with shape (2, ). input_params is a Tensor with shape (3, 4) and axis is 0.
>>> input_params = Tensor(np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]), mindspore.float32)
>>> input_indices = Tensor(np.array([0, 2]), mindspore.int32)
>>> axis = 0
>>> output = ops.Gather()(input_params, input_indices, axis)
>>> print(output)
[[1.  2.  3.  4.]
 [9. 10. 11. 12.]]
>>> # case4: input_indices is a Tensor with shape (2, ).
>>> # input_params is a Tensor with shape (3, 4) and axis is 1, batch_dims is 1.
>>> input_params = Tensor(np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]), mindspore.float32)
>>> input_indices = Tensor(np.array([0, 2, 1]), mindspore.int32)
>>> axis = 1
>>> batch_dims = 1
>>> output = ops.Gather(batch_dims)(input_params, input_indices, axis)
>>> print(output)
[ 1.  7. 10.]