文档反馈

问题文档片段

问题文档片段包含公式时,显示为空格。

提交类型
issue

有点复杂...

找人问问吧。

请选择提交类型

问题类型
规范和低错类

- 规范和低错类:

- 错别字或拼写错误,标点符号使用错误、公式错误或显示异常。

- 链接错误、空单元格、格式错误。

- 英文中包含中文字符。

- 界面和描述不一致,但不影响操作。

- 表述不通顺,但不影响理解。

- 版本号不匹配:如软件包名称、界面版本号。

易用性

- 易用性:

- 关键步骤错误或缺失,无法指导用户完成任务。

- 缺少主要功能描述、关键词解释、必要前提条件、注意事项等。

- 描述内容存在歧义指代不明、上下文矛盾。

- 逻辑不清晰,该分类、分项、分步骤的没有给出。

正确性

- 正确性:

- 技术原理、功能、支持平台、参数类型、异常报错等描述和软件实现不一致。

- 原理图、架构图等存在错误。

- 命令、命令参数等错误。

- 代码片段错误。

- 命令无法完成对应功能。

- 界面错误,无法指导操作。

- 代码样例运行报错、运行结果不符。

风险提示

- 风险提示:

- 对重要数据或系统存在风险的操作,缺少安全提示。

内容合规

- 内容合规:

- 违反法律法规,涉及政治、领土主权等敏感词。

- 内容侵权。

请选择问题类型

问题描述

点击输入详细问题描述,以帮助我们快速定位问题。

mindspore.dataset.vision.MixUp

class mindspore.dataset.vision.MixUp(batch_size, alpha, is_single=True)[源代码]

随机混合一批输入的numpy.ndarray图像及其标签。

首先将每个图像乘以一个从Beta分布随机生成的权重 lambda ,然后加上另一个图像与 1lambda 之积。使用同样的 lambda 值将图像对应的标签进行混合。请确保标签预先进行了one-hot编码。

参数:
  • batch_size (int) - 批处理大小,即图片的数量。

  • alpha (float) - Beta分布的α参数值,β参数也将使用该值。

  • is_single (bool,可选) - 若为True,将在批内随机混合图像[img0, …, img(n-1), img(n)]与[img1, …, img(n), img0]及对应标签;否则,将每批图像与前一批图像的处理结果混合。默认值:True。

异常:
  • TypeError - 当 batch_size 的类型不为int。

  • TypeError - 当 alpha 的类型不为float。

  • TypeError - 当 is_single 的类型不为bool。

  • ValueError - 当 batch_size 不为正数。

  • ValueError - 当 alpha 不为正数。

支持平台:

CPU

样例:

>>> # first decode the image
>>> image_folder_dataset = image_folder_dataset.map(operations=vision.Decode(),
...                                                 input_columns="image")
>>> # then ont hot decode the label
>>> image_folder_dataset = image_folder_dataset.map(operations=transforms.OneHot(10),
...                                                 input_columns="label")
>>> # batch the samples
>>> batch_size = 4
>>> image_folder_dataset = image_folder_dataset.batch(batch_size=batch_size)
>>> # finally mix up the images and labels
>>> image_folder_dataset = image_folder_dataset.map(
...     operations=py_vision.MixUp(batch_size=batch_size, alpha=0.2),
...     input_columns=["image", "label"])