Introduction || Quick Start || Tensor || Data Loading and Processing || Model || Autograd || Train || Save and Load || Accelerating with Static Graphs || Mixed Precision
Tensor
Tensor is a multilinear function that can be used to represent linear relationships between vectors, scalars, and other tensors. The basic examples of these linear relations are the inner product, the outer product, the linear map, and the Cartesian product. In the \(n\) dimensional space, its coordinates have \(n^{r}\) components. Each component is a function of coordinates, and these components are also linearly transformed according to certain rules when the coordinates are transformed. \(r\) is called the rank or order of this tensor (not related to the rank or order of the matrix).
A tensor is a special data structure that is similar to arrays and matrices. Tensor is the basic data structure in MindSpore network operations. This tutorial describes the attributes and usage of tensors.
import numpy as np
import mindspore
from mindspore import ops
from mindspore import Tensor
Creating a Tensor
There are multiple methods for creating tensors. When building a tensor, you can pass the Tensor
, float
, int
, bool
, tuple
, list
, and numpy.ndarray
types.
Generating a tensor based on data
You can create a tensor based on data. The data type can be set or automatically inferred by the framework.
data = [1, 0, 1, 0] x_data = Tensor(data) print(x_data, x_data.shape, x_data.dtype)
[1 0 1 0] (4,) Int4
Generating a tensor from the NumPy array
You can create a tensor from the NumPy array.
np_array = np.array(data) x_np = Tensor(np_array) print(x_np, x_np.shape, x_np.dtype)
[1 0 1 0] (4,) Int4
Generating a tensor by using init
When
init
is used to initialize a tensor, theinit
,shape
, anddtype
parameters can be transferred.init
: supports the subclass of initializer. For example, One() and Normal() below.shape
: supportslist
,tuple
, andint
.dtype
: supports mindspore.dtype.
from mindspore.common.initializer import One, Normal # Initialize a tensor with ones tensor1 = mindspore.Tensor(shape=(2, 2), dtype=mindspore.float32, init=One()) # Initialize a tensor from normal distribution tensor2 = mindspore.Tensor(shape=(2, 2), dtype=mindspore.float32, init=Normal()) print("tensor1:\n", tensor1) print("tensor2:\n", tensor2)
tensor1: [[1. 1.] [1. 1.]] tensor2: [[-0.00063482 -0.00916224] [ 0.01324238 -0.0171206 ]]
The
init
is used for delayed initialization in parallel mode. Usually, it is not recommended to useinit
interface to initialize parameters.Inheriting attributes of another tensor to form a new tensor
from mindspore import ops x_ones = ops.ones_like(x_data) print(f"Ones Tensor: \n {x_ones} \n") x_zeros = ops.zeros_like(x_data) print(f"Zeros Tensor: \n {x_zeros} \n")
Ones Tensor: [1 1 1 1] Zeros Tensor: [0 0 0 0]
Tensor Attributes
Tensor attributes include shape, data type, transposed tensor, item size, number of bytes occupied, dimension, size of elements, and stride per dimension.
shape: the shape of
Tensor
, a tuple.dtype: the dtype of
Tensor
, a data type of MindSpore.itemsize: the number of bytes occupied by each element in
Tensor
, which is an integer.nbytes: the total number of bytes occupied by
Tensor
, which is an integer.ndim: rank of
Tensor
, that is, len(tensor.shape), which is an integer.size: the number of all elements in
Tensor
, which is an integer.strides: the number of bytes to traverse in each dimension of
Tensor
, which is a tuple.
x = Tensor(np.array([[1, 2], [3, 4]]), mindspore.int32)
print("x_shape:", x.shape)
print("x_dtype:", x.dtype)
print("x_itemsize:", x.itemsize)
print("x_nbytes:", x.nbytes)
print("x_ndim:", x.ndim)
print("x_size:", x.size)
print("x_strides:", x.strides)
x_shape: (2, 2)
x_dtype: Int32
x_itemsize: 4
x_nbytes: 16
x_ndim: 2
x_size: 4
x_strides: (8, 4)
Tensor Indexing
Tensor indexing is similar to NumPy indexing. Indexing starts from 0, negative indexing means indexing in reverse order, and colons :
and ...
are used for slicing.
tensor = Tensor(np.array([[0, 1], [2, 3]]).astype(np.float32))
print("First row: {}".format(tensor[0]))
print("value of bottom right corner: {}".format(tensor[1, 1]))
print("Last column: {}".format(tensor[:, -1]))
print("First column: {}".format(tensor[..., 0]))
First row: [0. 1.]
value of bottom right corner: 3.0
Last column: [1. 3.]
First column: [0. 2.]
Tensor Operation
There are many operations between tensors, including arithmetic, linear algebra, matrix processing (transposing, indexing, and slicing), and sampling. The usage of tensor operation is similar to that of NumPy. The following describes several operations.
Common arithmetic operations include: addition (+), subtraction (-), multiplication (*), division (/), modulo (%), and exact division (//).
x = Tensor(np.array([1, 2, 3]), mindspore.float32)
y = Tensor(np.array([4, 5, 6]), mindspore.float32)
output_add = x + y
output_sub = x - y
output_mul = x * y
output_div = y / x
output_mod = y % x
output_floordiv = y // x
print("add:", output_add)
print("sub:", output_sub)
print("mul:", output_mul)
print("div:", output_div)
print("mod:", output_mod)
print("floordiv:", output_floordiv)
add: [5. 7. 9.]
sub: [-3. -3. -3.]
mul: [ 4. 10. 18.]
div: [4. 2.5 2. ]
mod: [0. 1. 0.]
floordiv: [4. 2. 2.]
concat connects a series of tensors in a given dimension.
data1 = Tensor(np.array([[0, 1], [2, 3]]).astype(np.float32))
data2 = Tensor(np.array([[4, 5], [6, 7]]).astype(np.float32))
output = ops.concat((data1, data2), axis=0)
print(output)
print("shape:\n", output.shape)
[[0. 1.]
[2. 3.]
[4. 5.]
[6. 7.]]
shape:
(4, 2)
stack combines two tensors from another dimension.
data1 = Tensor(np.array([[0, 1], [2, 3]]).astype(np.float32))
data2 = Tensor(np.array([[4, 5], [6, 7]]).astype(np.float32))
output = ops.stack([data1, data2])
print(output)
print("shape:\n", output.shape)
[[[0. 1.]
[2. 3.]]
[[4. 5.]
[6. 7.]]]
shape:
(2, 2, 2)
Conversion Between Tensor and NumPy
Tensor and NumPy can be converted to each other.
Tensor to NumPy
Use Tensor.asnumpy() to convert Tensor to NumPy, which is same as tensor building.
t = Tensor([1., 1., 1., 1., 1.])
print(f"t: {t}", type(t))
n = t.asnumpy()
print(f"n: {n}", type(n))
t: [1. 1. 1. 1. 1.] <class 'mindspore.common.tensor.Tensor'>
n: [1. 1. 1. 1. 1.] <class 'numpy.ndarray'>
NumPy to Tensor
Use Tensor()
to convert NumPy to Tensor.
n = np.ones(5)
t = Tensor.from_numpy(n)
np.add(n, 1, out=n)
print(f"n: {n}", type(n))
print(f"t: {t}", type(t))
n: [2. 2. 2. 2. 2.] <class 'numpy.ndarray'>
t: [2. 2. 2. 2. 2.] <class 'mindspore.common.tensor.Tensor'>