Training Process Exit Gracefully
Overview
When there are suboptimal devices in the training cluster, saving checkpoint and exiting the cluster training process before the failure occurs can effectively prevent the loss of weight data when the cluster is damaged. This also avoids issues such as training data rollback and loading checkpoint rollback when training recovery, effectively preventing the waste of training resources.
This document describes how to use the process graceful exit. In order to illustrate the specific usage, the example of detecting the exit configuration message at the first training step and terminating the training process early is used. You can get the full sample code here: process_graceful_exit .
graceful_exit.py
is the training code, train.sh
is the msrun
startup script, and graceful_exit.json
is the graceful exit config json file.
Data and Model Preparation
Data Preparation
Download the MNIST dataset and unzip the dataset to the project directory.
wget http://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/MNIST_Data.zip
unzip MNIST_Data.zip
Model Definition
import os
import mindspore as ms
import mindspore.context as context
import mindspore.dataset as ds
import mindspore.dataset.transforms as C
import mindspore.dataset.vision as CV
import mindspore.nn as nn
from mindspore.common import dtype as mstype
from mindspore.dataset.vision import Inter
from mindspore.train import Accuracy
from mindspore.train import Model, LossMonitor
from mindspore.train.callback import OnRequestExit
from mindspore.common.initializer import TruncatedNormal
from mindspore.communication.management import init
from mindspore.context import ParallelMode
from mindspore.parallel.auto_parallel import AutoParallel
from mindspore.nn.utils import no_init_parameters
context.set_context(mode=context.GRAPH_MODE)
# dataset
DATASET_PATH = "./MNIST_Data"
def create_dataset(data_path, batch_size=32, repeat_size=1,
num_parallel_workers=1):
"""
create dataset for train or test
"""
# define dataset
mnist_ds = ds.MnistDataset(data_path)
resize_height, resize_width = 32, 32
rescale = 1.0 / 255.0
shift = 0.0
rescale_nml = 1 / 0.3081
shift_nml = -1 * 0.1307 / 0.3081
# define map operations
resize_op = CV.Resize((resize_height, resize_width), interpolation=Inter.LINEAR) # Bilinear mode
rescale_nml_op = CV.Rescale(rescale_nml, shift_nml)
rescale_op = CV.Rescale(rescale, shift)
hwc2chw_op = CV.HWC2CHW()
type_cast_op = C.TypeCast(mstype.int32)
# apply map operations on images
mnist_ds = mnist_ds.map(operations=type_cast_op, input_columns="label", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=resize_op, input_columns="image", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=rescale_op, input_columns="image", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=rescale_nml_op, input_columns="image", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=hwc2chw_op, input_columns="image", num_parallel_workers=num_parallel_workers)
# apply DatasetOps
buffer_size = 10000
mnist_ds = mnist_ds.shuffle(buffer_size=buffer_size) # 10000 as in LeNet train script
mnist_ds = mnist_ds.batch(batch_size, drop_remainder=True)
mnist_ds = mnist_ds.repeat(repeat_size)
return mnist_ds
# define the training model
def conv(in_channels, out_channels, kernel_size, stride=1, padding=0):
"""weight initial for conv layer"""
weight = weight_variable()
return nn.Conv2d(in_channels, out_channels,
kernel_size=kernel_size, stride=stride, padding=padding,
weight_init=weight, has_bias=False, pad_mode="valid")
def fc_with_initialize(input_channels, out_channels):
"""weight initial for fc layer"""
weight = weight_variable()
bias = weight_variable()
return nn.Dense(input_channels, out_channels, weight, bias)
def weight_variable():
"""weight initial"""
return TruncatedNormal(0.02)
class LeNet5(nn.Cell):
def __init__(self, num_class=10, channel=1):
super(LeNet5, self).__init__()
self.num_class = num_class
self.conv1 = conv(channel, 6, 5)
self.conv2 = conv(6, 16, 5)
self.fc1 = fc_with_initialize(16 * 5 * 5, 120)
self.fc2 = fc_with_initialize(120, 84)
self.fc3 = fc_with_initialize(84, self.num_class)
self.relu = nn.ReLU()
self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
self.flatten = nn.Flatten()
def construct(self, x):
x = self.conv1(x)
x = self.relu(x)
x = self.max_pool2d(x)
x = self.conv2(x)
x = self.relu(x)
x = self.max_pool2d(x)
x = self.flatten(x)
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
x = self.relu(x)
x = self.fc3(x)
return x
Environment Variable And Callback Function
Environment Variable
Using Training process Graceful Exit requires setting the environment variable MS_ENABLE_GRACEFUL_EXIT
to 1
. This environment variable can control the synchronization operator into the graph to ensure that all training processes can exit synchronously.
export MS_ENABLE_GRACEFUL_EXIT=1
Callback Function
In addition to the above of environment variable, it also needs to configure the callback function OnRequestExit
, and specify the path to the graceful exit configuration file with the parameter config_file
. This callback function will check if there is a graceful exit json file in the specified path at every training step begin. If the file exists, and the GracefulExit
is 1
, it will save checkpoint and exit training process at current step end.
The GracefulExit
in the configuration file is dynamically configured during training. Generally, the keyword is modified when suboptimal devices exist in the training cluster and the training process needs to exit.
# key in json file: ‘{“GracefulExit”: 1}’
config_json = r"./graceful_exit.json"
# set callback function
cb = OnRequestExit(file_name="LeNet", config_file=config_json)
When configuring the OnRequestExit
callback function, you can configure saving mindir, saving checkpoint, and other configuration parameters as required. For more details, please refer to the documentation OnRequestExit.
def graceful_exit_case():
# init
device_num = 8
context.set_context(mode=context.GRAPH_MODE)
ms.set_device("Ascend")
init()
# build
with no_init_parameters():
network = LeNet5(10)
net_opt = nn.Momentum(network.trainable_params(), 0.01, 0.9)
ds_train = create_dataset(os.path.join(DATASET_PATH, "train"), 32, 1)
net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
parallel_net = AutoParallel(network, parallel_mode='semi_auto')
model = Model(parallel_net, net_loss, net_opt, metrics={"Accuracy": Accuracy()})
# graceful exit json file: {"GracefulExit": 1}
reset_json = r"./graceful_exit.json"
# callback
cb = OnRequestExit(file_name="LeNet", config_file=reset_json)
# train
model.train(1, ds_train, callbacks=[cb, LossMonitor()], dataset_sink_mode=False)
Starting Training
Using msrun
to start training.
msrun --worker_num=8 --local_worker_num=8 --master_addr=127.0.0.1 --master_port=10970 --join=True --log_dir=./comm_subgraph_logs graceful_exit_case.py
Analyzing the Results
After training ends, the following WARNING log will be printed: Graceful exit is triggered, stop training
. Eight directories named rank_0
to rank_7
will be generated in the current execution directory, each containing a LeNet_train.ckpt
file (If the callback is configured to save a checkpoint).
./rank_0
├── LeNet_train.ckpt
└── LeNet_train.mindir
./rank_1
├── LeNet_train.ckpt
└── LeNet_train.mindir
./rank_2
├── LeNet_train.ckpt
└── LeNet_train.mindir
./rank_3
├── LeNet_train.ckpt
└── LeNet_train.mindir
./rank_4
├── LeNet_train.ckpt
└── LeNet_train.mindir
./rank_5
├── LeNet_train.ckpt
└── LeNet_train.mindir
./rank_6
├── LeNet_train.ckpt
└── LeNet_train.mindir
./rank_7
├── LeNet_train.ckpt
└── LeNet_train.mindir
Notes
If TrainOneStepCell is not overridden, the process graceful exit feature can be implemented by simply configuring the MS_ENABLE_GRACEFUL_EXIT
environment variable and the OnRequestExit
callback function, and modifying the graceful exit configuration file as needed at a certain point in the training.
If the network model requires overriding TrainOneStepCell:
Inherit the parent class TrainOneStepCell and add the following
if
conditional branching code inside the construct method to ensure that the graceful exit function works (inheriting from TrainOneStepCell, you can use these member variables directly):class TrainOneStepCellWithABC(TrainOneStepCell): def __init__(self, ...): ... def construct(self, *inputs): ... grads = self.grad(self.network, self.weights)(*inputs, sens) if self.use_graceful_exit: grads = self.graceful_exit.exit_by_request(grads, self.init_param, self.exit_param) loss = F.depend(loss, self.optimizer(grads)) ...
The new method is not inherits from TrainOneStepCell, you need add the following code in
__init__
method(don't change parameter's name), and using in theconstruct
method. The sample code is as follows:from mindspore.utils import ExitByRequest class TrainOneStepCellWithABC(Cell): def __init__(self, ...): ... self.use_graceful_exit = os.environ.get("MS_ENABLE_GRACEFUL_EXIT") == "1" if self.use_graceful_exit: self.graceful_exit = ExitByRequest() self.exit_param = Parameter(Tensor(False, mstype.bool_), name="graceful_exit") # update by reduce value self.init_param = Parameter(Tensor([0], mstype.int32), name="graceful_init") # update by config file def construct(self, *inputs): ... if self.use_graceful_exit: grads = self.graceful_exit.exit_by_request(grads, self.init_param, self.exit_param) loss = F.depend(loss, self.optimizer(grads)) ...