mindflow.cell.SNO1D
- class mindflow.cell.SNO1D(in_channels, out_channels, hidden_channels=64, num_sno_layers=3, data_format='channels_first', transforms=None, kernel_size=5, activation='gelu', compute_dtype=mstype.float32)[source]
The 1D SNO, which contains a lifting layer (encoder), multiple spectral transform layers and a projection layer (decoder). See documentation for base class,
mindflow.cell.SNO
.Examples
>>> import numpy as np >>> from mindspore import Tensor >>> import mindspore.common.dtype as mstype >>> from mindflow.cell import SNO1D >>> resolution, modes = 100, 12 >>> matr = Tensor(np.random.rand(modes, resolution), mstype.float32) >>> inv_matr = Tensor(np.random.rand(resolution, modes), mstype.float32) >>> net = SNO1D(in_channels=3, out_channels=7, transforms=[[matr, inv_matr]]) >>> x = Tensor(np.random.rand(5, 3, resolution), mstype.float32) >>> y = net(x) >>> print(x.shape, y.shape) (5, 3, 100) (5, 7, 100)