mindflow.cell.ResBlock
- class mindflow.cell.ResBlock(in_channels, out_channels, weight_init='normal', bias_init='zeros', has_bias=True, activation=None, weight_norm=False)[source]
The ResBlock of dense layer.
- Parameters
in_channels (int) – The number of channels in the input space.
out_channels (int) – The number of channels in the output space.
weight_init (Union[Tensor, str, Initializer, numbers.Number]) – The trainable weight_init parameter. The dtype is same as input x. The values of str refer to the function initializer. Default:
'normal'
.bias_init (Union[Tensor, str, Initializer, numbers.Number]) – The trainable bias_init parameter. The dtype is same as input x. The values of str refer to the function initializer. Default:
'zeros'
.has_bias (bool) – Specifies whether the layer uses a bias vector. Default:
True
.activation (Union[str, Cell, Primitive, None]) – activate function applied to the output of the dense layer. Default:
None
.weight_norm (bool) – Whether to compute the sum of squares of weight. Default:
False
.
- Inputs:
input (Tensor) - Tensor of shape \((*, in\_channels)\).
- Outputs:
Tensor of shape \((*, out\_channels)\).
- Raises
ValueError – If in_channels not equal out_channels.
TypeError – If activation is not in str or Cell or Primitive.
- Supported Platforms:
Ascend
GPU
Examples
>>> import numpy as np >>> from mindflow.cell import ResBlock >>> from mindspore import Tensor >>> input = Tensor(np.array([[180, 234, 154], [244, 48, 247]], np.float32)) >>> net = ResBlock(3, 3) >>> output = net(input) >>> print(output.shape) (2, 3)