mindspore.dataset.audio.FrequencyMasking

class mindspore.dataset.audio.FrequencyMasking(iid_masks=False, freq_mask_param=0, mask_start=0, mask_value=0.0)[源代码]

给音频波形施加频域掩码。

说明

待处理音频shape需为<…, freq, time>。

参数:
  • iid_masks (bool, 可选) - 是否施加随机掩码。默认值:False。

  • freq_mask_param (int, 可选) - 当 iid_masks 为True时,掩码长度将从[0, freq_mask_param]中均匀采样;当 iid_masks 为False时,直接使用该值作为掩码长度。取值范围为[0, freq_length],其中 freq_length 为音频波形在频域的长度。默认值:0。

  • mask_start (int, 可选) - 添加掩码的起始位置,只有当 iid_masks 为True时,该值才会生效。取值范围为[0, freq_length - frequency_mask_param],其中 freq_length 为音频波形在频域的长度。默认值:0。

  • mask_value (float, 可选) - 掩码填充值。默认值:0.0。

异常:
  • TypeError - 当 iid_masks 的类型不为bool。

  • TypeError - 当 freq_mask_param 的类型不为int。

  • ValueError - 当 freq_mask_param 大于音频频域长度。

  • TypeError - 当 mask_start 的类型不为int。

  • ValueError - 当 mask_start 为负数。

  • TypeError - 当 mask_value 的类型不为float。

  • ValueError - 当 mask_value 为负数。

  • RuntimeError - 当输入音频的shape不为<…, freq, time>。

../../_images/frequency_masking_original.png ../../_images/frequency_masking.png
支持平台:

CPU

样例:

>>> import numpy as np
>>>
>>> waveform = np.random.random([1, 3, 2])
>>> numpy_slices_dataset = ds.NumpySlicesDataset(data=waveform, column_names=["audio"])
>>> transforms = [audio.FrequencyMasking(freq_mask_param=1)]
>>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms, input_columns=["audio"])