Document feedback

Question document fragment

When a question document fragment contains a formula, it is displayed as a space.

Submission type
issue

It's a little complicated...

I'd like to ask someone.

PR

Just a small problem.

I can fix it online!

Please select the submission type

Problem type
Specifications and Common Mistakes

- Specifications and Common Mistakes:

- Misspellings or punctuation mistakes,incorrect formulas, abnormal display.

- Incorrect links, empty cells, or wrong formats.

- Chinese characters in English context.

- Minor inconsistencies between the UI and descriptions.

- Low writing fluency that does not affect understanding.

- Incorrect version numbers, including software package names and version numbers on the UI.

Usability

- Usability:

- Incorrect or missing key steps.

- Missing main function descriptions, keyword explanation, necessary prerequisites, or precautions.

- Ambiguous descriptions, unclear reference, or contradictory context.

- Unclear logic, such as missing classifications, items, and steps.

Correctness

- Correctness:

- Technical principles, function descriptions, supported platforms, parameter types, or exceptions inconsistent with that of software implementation.

- Incorrect schematic or architecture diagrams.

- Incorrect commands or command parameters.

- Incorrect code.

- Commands inconsistent with the functions.

- Wrong screenshots.

- Sample code running error, or running results inconsistent with the expectation.

Risk Warnings

- Risk Warnings:

- Lack of risk warnings for operations that may damage the system or important data.

Content Compliance

- Content Compliance:

- Contents that may violate applicable laws and regulations or geo-cultural context-sensitive words and expressions.

- Copyright infringement.

Please select the type of question

Problem description

Describe the bug so that we can quickly locate the problem.

mindformers.core.AdamW

View Source On Gitee
class mindformers.core.AdamW(params, learning_rate=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0.0)[source]

This is the implementation of AdamW.

Missing argument for \widehat

m represents the first moment vector moment1, v represents the second moment vector moment2, m^ represents the bias-corrected first moment vector, v^ represents the bias-corrected second moment vector, g represents gradients, γ represents learning_rate, β1, beta_2 represent beta1 and beta2, t represents the current step, w represents params, and λ represents weight_decay.

Parameters
  • params (Union[list[Parameter], list[dict]]) –

    Must be list of Parameter or list of dict. When the params is a list of dict, the string "params", "lr", "weight_decay", and "order_params" are the keys can be parsed.

    • params: Required. Parameters in current group. The value must be a list of Parameter.

    • lr: Optional. If "lr" in the keys, the value of corresponding learning rate will be used. If not, the learning_rate in optimizer will be used. Fixed and dynamic learning rate are supported.

    • weight_decay: Optional. If "weight_decay" in the keys, the value of corresponding weight decay will be used. If not, the weight_decay in the optimizer will be used. It should be noted that weight decay can be a constant value or a Cell. It is a Cell only when dynamic weight decay is applied. Dynamic weight decay is similar to dynamic learning rate, users need to customize a weight decay schedule only with global step as input, and during training, the optimizer calls the instance of WeightDecaySchedule to get the weight decay value of current step.

    • order_params: Optional. When parameters is grouped, this usually is used to maintain the order of parameters that appeared in the network to improve performance. The value should be parameters whose order will be followed in optimizer. If order_params in the keys, other keys will be ignored and the element of 'order_params' must be in one group of params.

  • learning_rate (Union[float, int, Tensor, Iterable, LearningRateSchedule], optional) –

    Default: 1e-3.

    • float: The fixed learning rate value. Must be equal to or greater than 0.

    • int: The fixed learning rate value. Must be equal to or greater than 0. It will be converted to float.

    • Tensor: Its value should be a scalar or a 1-D vector. For scalar, fixed learning rate will be applied. For vector, learning rate is dynamic, then the i-th step will take the i-th value as the learning rate.

    • Iterable: Learning rate is dynamic. The i-th step will take the i-th value as the learning rate.

    • LearningRateSchedule: Learning rate is dynamic. During training, the optimizer calls the instance of LearningRateSchedule with step as the input to get the learning rate of current step.

  • betas (Union[list(float), tuple(float)], optional) – The exponential decay rate for the 1st and 2nd moment estimations. Default: (0.9, 0.999). Each element should be in range (0.0, 1.0).

  • eps (float, optional) – Term added to the denominator to improve numerical stability. Default: 1e-6. Should be greater than 0.

  • weight_decay (Union[float, int, Cell], optional) –

    Weight decay (L2 penalty). Default: 0.0.

    • float: The fixed weight decay value. Must be equal to or greater than 0.

    • int: The fixed weight decay value. Must be equal to or greater than 0. It will be converted to float.

    • Cell: Weight decay is dynamic. During training, the optimizer calls the instance of the Cell with step as the input to get the weight decay value of current step.

Inputs:
  • gradients (tuple[Tensor]) - The gradients of params, the shape is the same as params.

Outputs:

tuple[bool], all elements are True.

Raises
  • TypeError – If learning_rate is not one of int, float, Tensor, Iterable, LearningRateSchedule.

  • TypeError – If element of parameters is neither Parameter nor dict.

  • TypeError – If betas[0], betas[1] or eps is not a float.

  • TypeError – If weight_decay is neither float nor int.

  • ValueError – If eps is less than or equal to 0.

  • ValueError – If betas[0], betas[1] is not in range (0.0, 1.0).

  • ValueError – If weight_decay is less than 0.

Examples

>>> import mindspore as ms
>>> import mindspore.nn as nn
>>> from mindformers import AutoModel
>>> from mindformers.core.optim import AdamW
>>>
>>> ms.set_context(mode=ms.context.GRAPH_MODE)
>>> net = AutoModel.from_pretrained("llama2_7b", num_layers=2)
>>> #1) All parameters use the same learning rate and weight decay
>>> optim = AdamW(params=net.trainable_params())
>>>
>>> #2) Use parameter groups and set different values
>>> layernorm_params = list(filter(lambda x: 'norm' in x.name, net.trainable_params()))
>>> no_layernorm_params = list(filter(lambda x: 'norm' not in x.name, net.trainable_params()))
>>> group_params = [{'params': layernorm_params, 'weight_decay': 0.01},
...                 {'params': no_layernorm_params, 'lr': 0.01},
...                 {'order_params': net.trainable_params()}]
>>> optim = AdamW(group_params, learning_rate=0.1, weight_decay=0.0)
>>> # The layernorm_params's parameters will use default learning rate of 0.1 and weight decay of 0.01.
>>> # The no_layernorm_params's parameters will use learning rate of 0.01 and default weight decay of 0.0.
>>> # The final parameters order in which the optimizer will be followed is the value of 'order_params'.
>>>
>>> loss = nn.SoftmaxCrossEntropyWithLogits()
>>> model = ms.Model(net, loss_fn=loss, optimizer=optim)