Quantization
Overview
Quantization is an important technology for compressing foundation models. It converts floating-point parameters in a model into low-precision integer parameters to compress the parameters. As the parameters and specifications of a model increase, quantization can effectively reduce the model storage space and loading time during model deployment, improving the model inference performance.
MindFormers integrates the MindSpore Golden Stick tool component to provide a unified quantization inference process, facilitating out-of-the-box use.
Auxiliary Installation
Before using the quantization inference function, install MindSpore Golden Stick. For details, see Installation.
Download the source code and go to the golden_stick
directory.
bash build.sh
pip install output/mindspore_gs-0.6.0-py3-none-any.whl
Run the following commands to verify the installation:
pip show mindspore_gs
# Name: mindspore_gs
# Version: 0.6.0
# Summary: A MindSpore model optimization algorithm set..
# Home-page: https://www.mindspore.cn
# Author: The MindSpore Authors
# Author-email: contact@mindspore.cn
# License: Apache 2.0
Procedure
Based on actual operations, quantization may be decomposed into the following steps:
Selecting a model: Select a language model. Currently, the Llama2_13B and Llama2_70B models support quantization.
Downloading the model weights: Download the weight of the corresponding model from the HuggingFace model library and convert the model to the CKPT format by referring to Weight Conversion.
Converting the quantization model weight: Run the conversion script
quant_ckpt.py
in the mindspore_gs library to convert the original weight in step 2 to the quantization weight.Preparing the quantization configuration file: Use the built-in quantization inference configuration file of MindFormers that matches the model. The quantization-related configuration item is
model.model_config.quantization_config
.The following uses the
llama2_13b_rtn
quantization model as an example. The default quantization configuration is as follows:quantization_config: quant_method: 'rtn' weight_dtype: 'int8' activation_dtype: None kvcache_dtype: None outliers_suppression: None act_quant_granularity: "per_tensor" kvcache_quant_granularity: "per_channel" weight_quant_granularity: "per_channel" precision_recovery: None modules_to_not_convert: ['lm_head'] algorithm_args: {}
Parameter
Attribute
Description
Type
Value Range
quant_method
Required
Supported quantization algorithm. Currently, only the RTN, Smooth_Quant, and PTQ algorithms are supported.
str
rtn/smooth_quant/ptq
weight_dtype
Required
Quantized weight type. Currently, only int8 is supported.
str
int8/None
activation_dtype
Required
Activation type of the parameter. None indicates that the original computing type (compute_dtype) of the network remains unchanged.
str
int8/None
kvcache_dtype
Optional
KVCache quantization type. If the value is None or not specified, the original KVCache data type remains unchanged.
str
int8/None
outliers_suppression
Optional
Algorithm type used for abnormal value suppression. Currently, only smooth suppression is supported.
str
smooth/None
act_quant_granularity
Optional
Activation quantization granularity, defaults to per_tensor
str
per_tensor/per_token
kvcache_quant_granularity
Optional
KVCache quantization granularity, defaults to per_channel
str
per_channel/per_token
weight_quant_granularity
Optional
weight quantization granularity, defaults to per_channel
str
per_channel/per_group
precision_recovery
Optional
precision recovery algorithms, defaults to None
str
GPTQ/None
modules_to_not_convert
Required
Layer that is not quantized.
List[str]
/
algorithm_args
Required
Configurations of different algorithm types for connecting to the MindSpore Golden Stick. For example, alpha is set to 0.5 for the Smooth_Quant algorithm.
Dict
/
group_size
Optional
The size of the group for per_group quantization. When weight_quant_granularity is set to per_group, group_size is required.
int
64/128
Executing inference tasks: Implement the inference script based on the
generate
API and run the script to obtain the inference result.
Using the RTN Quantization Algorithm to Perform A16W8 Quantization Inference Based on the Llama2_13B Model
Selecting a Model
In this practice, the Llama2-13B model is used for single-device quantization inference.
In this practice, AutoModel.from_pretrained()
is used to instantiate a model by specifying the models or weight path. You need to create a storage directory in advance.
mkdir /data/tutorial/llama2_13b_rtn_a16w8_dir
Note: Currently, the AutoModel.from_pretrained() API does not support instantiation by specifying parameters based on the quantized model name.
Directory structure of a single device
llama2_13b_rtn_a16w8_dir
├── predict_llama2_13b_rtn.yaml
└── llama2_13b_rtn_a16w8.ckpt
Downloading the Model Weights
MindFormers provides pretrained weights and vocabulary files that have been converted for pretraining, fine-tuning, and inference. You can also download the official HuggingFace weights and perform the operations in Converting Model Weights before using these weights.
You can download the vocabulary at tokenizer.model.
Model |
MindSpore Weight |
HuggingFace Weight |
---|---|---|
llama2-13b |
Note: All weights of Llama2 need to be obtained by submitting an application to Meta. If necessary, apply for the weights by yourself.
Converting Model Weights
Go to the root directory golden-stick
of the mindspore_gs library and run the quantization weight conversion script.
python example/ptq/quant_ckpt.py -c /path/to/predict_llama2_13b.yaml -s /path/to/boolq/dev.jsonl -t boolq -q rtn-a16w8 > log_rtn_a16w8_quant 2>&
Set load_checkpoint
in predict_llama2_13b.yaml
to the path for storing the original weight downloaded in the previous step.
During the conversion, boolq
is used to verify the datasets. You can download it at the boolq dataset link. After the download is complete, specify the path for storing dev.jsonl
in the preceding script.
Run the script to copy the generated quantization weight file to the llama2_13b_rtn_a16w8_dir
directory.
cp output/rtn-a16w8_ckpt/rank_0/rtn-a16w8.ckpt /data/tutorial/llama2_13b_rtn_a16w8_dir/llama2_13b_rtn_a16w8.ckpt
Preparing the Quantization Configuration File
The configuration file predict_llama2_13b_rtn.yaml is provided in MindFormers. You need to copy it to the llama2_13b_rtn_a16w8_dir
directory.
cp configs/llama2/predict_llama2_13b_rtn.yaml /data/tutorial/llama2_13b_rtn_a16w8_dir
Executing Inference Tasks
Script instances
Replace the run_llama2_generate.py script in MindFormers with the following code.
In this practice, the quantization model is instantiated based on the
AutoModel.from_pretrained()
API. You need to modify the parameters in the API to the created directory.You can call the
generate
API to obtain the inference result. For details about the parameters, see the AutoModel and generate API documents."""llama2 predict example.""" import argparse import os import mindspore as ms from mindspore import Tensor, Model from mindspore.common import initializer as init from mindformers import AutoModel from mindformers import MindFormerConfig, logger from mindformers.core.context import build_context from mindformers.core.parallel_config import build_parallel_config from mindformers.models.llama import LlamaTokenizer from mindformers.trainer.utils import transform_and_load_checkpoint def main(config_path, use_parallel, load_checkpoint): # Construct the input content. inputs = ["I love Beijing, because", "LLaMA is a", "Huawei is a company that"] batch_size = len(inputs) # Generate model configurations based on the YAML file. config = MindFormerConfig(config_path) config.use_parallel = use_parallel device_num = os.getenv('MS_WORKER_NUM') logger.info(f"Use device number: {device_num}, it will override config.model_parallel.") config.parallel_config.model_parallel = int(device_num) if device_num else 1 config.parallel_config.data_parallel = 1 config.parallel_config.pipeline_stage = 1 config.load_checkpoint = load_checkpoint # Initialize the environment. build_context(config) build_parallel_config(config) model_name = config.trainer.model_name # Instantiate a tokenizer. tokenizer = LlamaTokenizer.from_pretrained(model_name) # Instantiate the model. network = AutoModel.from_pretrained("/data/tutorial/llama2_13b_rtn_a16w8_dir", download_checkpoint=False) model = Model(network) # Load weights. if config.load_checkpoint: logger.info("----------------Transform and load checkpoint----------------") seq_length = config.model.model_config.seq_length input_ids = Tensor(shape=(batch_size, seq_length), dtype=ms.int32, init=init.One()) infer_data = network.prepare_inputs_for_predict_layout(input_ids) transform_and_load_checkpoint(config, model, network, infer_data, do_predict=True) inputs_ids = tokenizer(inputs, max_length=config.model.model_config.seq_length, padding="max_length")["input_ids"] outputs = network.generate(inputs_ids, max_length=config.model.model_config.max_decode_length, do_sample=config.model.model_config.do_sample, top_k=config.model.model_config.top_k, top_p=config.model.model_config.top_p) for output in outputs: print(tokenizer.decode(output)) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--config_path', default='predict_llama2_7b.yaml', type=str, help='model config file path.') parser.add_argument('--use_parallel', action='store_true', help='if run model prediction in parallel mode.') parser.add_argument('--load_checkpoint', type=str, help='load model checkpoint path or directory.') args = parser.parse_args() main( args.config_path, args.use_parallel, args.load_checkpoint )
Startup script
MindFormers provides a quick inference script for the
Llama2
model, supporting single-device, multi-device, and multi-batch inferences.# Script usage bash scripts/examples/llama2/run_llama2_predict.sh PARALLEL CONFIG_PATH CKPT_PATH DEVICE_NUM # Parameters PARALLEL: specifies whether to use multi-device inference. 'single' indicates single-device inference, and 'parallel' indicates multi-device inference. CONFIG_PATH: model configuration file path. CKPT_PATH: path of the model weight file. DEVICE_NUM: number of used devices. This parameter takes effect only when multi-device inference is enabled.
Single-Device Inference
bash scripts/examples/llama2/run_llama2_predict.sh single /data/tutorial/llama2_13b_w8a16_dir/predict_llama2_13b_w8a16.yaml /data/tutorial/llama2_13b_w8a16_dir/llama2_13b_w8a16.ckpt
The inference result is as follows:
'text_generation_text': [I love Beijing, because it is a city that is constantly constantly changing. I have been living here for ......] 'text_generation_text': [LLaMA is a large-scale, open-source, multimodal, multilingual, multitask, and multimodal pretrained language model. It is ......] 'text_generation_text': [Huawei is a company that has been around for a long time. ......]