mindspore.ops.tensor_scatter_max
- mindspore.ops.tensor_scatter_max(input_x, indices, updates)[源代码]
根据指定的更新值和输入索引,通过最大值运算,输出结果以Tensor形式返回。
索引的最后一个轴是每个索引向量的深度。对于每个索引向量, updates 中必须有相应的值。 updates 的shape应该等于 input_x[indices] 的shape。
说明
如果 indices 的某些值超出范围,则 input_x 不会更新相应的 updates,同时也不会抛出索引错误。
- 参数:
input_x (Tensor) - 输入Tensor。 input_x 的维度必须不小于indices.shape[-1]。
indices (Tensor) - 输入Tensor的索引,数据类型为int32或int64。其rank必须至少为2。
updates (Tensor) - 指定与 input_x 取最小值操作的Tensor,其数据类型与输入相同。updates.shape应该等于indices.shape[:-1] + input_x.shape[indices.shape[-1]:]。
- 返回:
Tensor,shape和数据类型与输入 input_x 相同。
- 异常:
TypeError - indices 的数据类型既不是int32,也不是int64。
ValueError - input_x 的shape长度小于 indices 的shape的最后一个维度。
- 支持平台:
GPU
CPU
样例:
>>> input_x = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]), mindspore.float32) >>> indices = Tensor(np.array([[0, 0], [0, 0]]), mindspore.int32) >>> updates = Tensor(np.array([1.0, 2.2]), mindspore.float32) >>> # Next, demonstrate the approximate operation process of this operator: >>> # 1, indices[0] = [0, 0], indices[1] = [0, 0] >>> # 2, And input_x[0, 0] = -0.1 >>> # 3, So input_x[indices] = [-0.1, -0.1] >>> # 4, Satisfy the above formula: input_x[indices].shape=(2) == updates.shape=(2) >>> output = ops.tensor_scatter_max(input_x, indices, updates) >>> # 5, Perform the max operation for the first time: >>> # first_input_x = Max(input_x[0][0], updates[0]) = [[1.0, 0.3, 3.6], [0.4, 0.5, -3.2]] >>> # 6, Perform the max operation for the second time: >>> # second_input_x = Max(input_x[0][0], updates[1]) = [[2.2, 0.3, 3.6], [0.4, 0.5, -3.2]] >>> print(output) [[ 2.2 0.3 3.6] [ 0.4 0.5 -3.2]]