mindspore.dataset.audio.InverseMelScale

class mindspore.dataset.audio.InverseMelScale(n_stft, n_mels=128, sample_rate=16000, f_min=0.0, f_max=None, max_iter=100000, tolerance_loss=1e-05, tolerance_change=1e-08, sgdargs=None, norm=NormType.NONE, mel_type=MelType.HTK)[源代码]

使用转换矩阵从梅尔频率STFT求解普通频率的STFT。

参数:
  • n_stft (int) - STFT中的频段数。

  • n_mels (int, 可选) - mel滤波器的数量。默认值:128。

  • sample_rate (int, 可选) - 音频信号采样频率。默认值:16000。

  • f_min (float, 可选) - 最小频率。默认值:0.0。

  • f_max (float, 可选) - 最大频率。默认值:None,将设置为 sample_rate//2

  • max_iter (int, 可选) - 最大优化迭代次数。默认值:100000。

  • tolerance_loss (float, 可选) - 当达到损失值时停止优化。默认值:1e-5。

  • tolerance_change (float, 可选) - 指定损失差异,当达到损失差异时停止优化。默认值:1e-8。

  • sgdargs (dict, 可选) - SGD优化器的参数。默认值:None,将设置为{‘sgd_lr’: 0.1, ‘sgd_momentum’: 0.9}。

  • norm (NormType, 可选) - 标准化方法,可以是NormType.SLANEY或NormType.NONE。默认值:NormType.NONE。

  • mel_type (MelType, 可选) - 要使用的Mel比例,可以是MelType.SLAN或MelType.HTK。默认值:MelType.HTK。

样例:

>>> import numpy as np
>>>
>>> waveform = np.random.randn(2, 2, 3, 2)
>>> numpy_slices_dataset = ds.NumpySlicesDataset(data=waveform, column_names=["audio"])
>>> transforms = [audio.InverseMelScale(20, 3, 16000, 0, 8000, 10)]
>>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms, input_columns=["audio"])