mindspore.ops
可用于Cell的构造函数的算子。
import mindspore.ops as ops
MindSpore中 mindspore.ops 接口与上一版本相比,新增、删除和支持平台的变化信息请参考 API Updates 。
算子原语
Primitive是Python中算子原语的基类。 |
|
PrimitiveWithCheck是Python中原语的基类,定义了检查算子输入参数的函数,但是使用了C++源码中注册的推理方法。 |
|
PrimitiveWithInfer是Python中的原语基类,在python中定义了跟踪推理的函数。 |
装饰器
创建PrimiveWithInfer算子,用于在编译时推断值。 |
|
A decorator which is used to bind the registration information to the func parameter of |
|
用于MindSpore Hybrid DSL函数书写的装饰器。 |
|
用于注册算子的装饰器。 |
|
Primitive属性的注册器。 |
神经网络层算子
神经网络
接口名 |
概述 |
支持平台 |
对输入的多维数据进行二维平均池化运算。 |
|
|
对输入的多维数据进行三维的平均池化运算。 |
|
|
It's similar to operator |
弃用 |
|
对输入数据进行归一化(Batch Normalization)和更新参数。 |
|
|
2D convolution layer. |
|
|
The Conv2DBackpropInput interface is deprecated, please refer to |
弃用 |
|
Compute a 2D transposed convolution, which is also known as a deconvolution (although it is not an actual deconvolution). |
|
|
3D convolution layer. |
|
|
Computes a 3D transposed convolution, which is also known as a deconvolution (although it is not an actual deconvolution). |
|
|
Performs greedy decoding on the logits given in inputs. |
|
|
DepthwiseConv2dNative will be deprecated in the future. |
弃用 |
|
Dropout是一种正则化手段,通过在训练中以 \(1 - keep\_prob\) 的概率随机将神经元输出设置为0,起到减少神经元相关性的作用,避免过拟合。 |
|
|
在训练期间,根据概率 1 - keep_prob ,随机的将一些通道设置为0,且服从伯努利分布。 |
|
|
随机丢弃层。 |
|
|
The DropoutDoMask interface is deprecated, please use the |
弃用 |
|
The DropoutGenMask interface is deprecated, please use the |
弃用 |
|
Applies a single-layer gated recurrent unit (GRU) to an input sequence. |
|
|
Applies a recurrent neural network to the input. |
|
|
扁平化(Flatten)输入Tensor,不改变0轴的size。 |
|
|
在输入Tensor上应用层归一化(Layer Normalization)。 |
|
|
Local Response Normalization. |
|
|
Performs the Long Short-Term Memory (LSTM) on the input. |
|
|
对输入的多维数据进行二维的最大池化运算。 |
|
|
对输入的多维数据进行三维的最大池化运算。 |
|
|
对输入Tensor执行最大池化运算,并返回最大值和索引。 |
|
|
Pads the input tensor according to the paddings and mode. |
|
|
根据参数 paddings 对输入进行填充。 |
|
|
根据指定的索引,返回输入Tensor的切片。 |
|
|
将输入Tensor的最后一个维度从1扩展到 pad_dim_size ,其填充值为0。 |
|
|
使用最近邻插值算法调整输入Tensor为指定大小。 |
|
|
使用双线性插值调整图像大小到指定的大小。 |
|
损失函数
接口名 |
概述 |
支持平台 |
输入经过sigmoid激活函数后作为预测值,BCEWithLogitsLoss计算预测值和目标值之间的二值交叉熵损失。 |
|
|
Computes the binary cross entropy between the logits and the labels. |
|
|
Calculates the CTC (Connectionist Temporal Classification) loss and the gradient. |
|
|
Computes the Kullback-Leibler divergence between the logits and the labels. |
|
|
用于计算L2范数的一半,但不对结果进行开方操作。 |
|
|
获取预测值和目标值之间的负对数似然损失。 |
|
|
Computes the RNNTLoss and its gradient with respect to the softmax outputs. |
|
|
计算预测值与真实值之间的sigmoid交叉熵。 |
|
|
Computes smooth L1 loss, a robust L1 loss. |
|
|
SoftMarginLoss operation. |
|
|
使用one-hot编码获取预测值和真实之间的softmax交叉熵。 |
|
|
Computes the softmax cross-entropy value between logits and sparse encoding labels. |
|
激活函数
接口名 |
概述 |
支持平台 |
指数线性单元激活函数(Exponential Linear Unit activation function)。 |
|
|
Fast Gaussian Error Linear Units activation function. |
|
|
高斯误差线性单元激活函数(Gaussian Error Linear Units activation function)。 |
|
|
Applies the hard shrinkage function element-wise, each element complies with the following function: |
|
|
Hard sigmoid activation function. |
|
|
Hard swish activation function. |
|
|
LogSoftmax激活函数。 |
|
|
Computes MISH(A Self Regularized Non-Monotonic Neural Activation Function) of input tensors element-wise. |
|
|
带参数的线性修正单元激活函数(Parametric Rectified Linear Unit activation function)。 |
|
|
线性修正单元激活函数(Rectified Linear Unit)。 |
|
|
Computes ReLU (Rectified Linear Unit) upper bounded by 6 of input tensors element-wise. |
|
|
线性修正单元激活函数(Rectified Linear Unit activation function)。 |
|
|
激活函数SeLU(Scaled exponential Linear Unit)。 |
|
|
Sigmoid激活函数。 |
|
|
Softmax函数。 |
|
|
Softplus activation function. |
|
|
Applies the SoftShrink function element-wise. |
|
|
Softsign activation function. |
|
|
Tanh激活函数。 |
|
优化器
接口名 |
概述 |
支持平台 |
Updates gradients by the Adaptive Moment Estimation (Adam) algorithm. |
|
|
Updates gradients by the Adaptive Moment Estimation (Adam) algorithm. |
|
|
Updates gradients by the Adaptive Moment Estimation algorithm with weight decay (AdamWeightDecay). |
|
|
AdaptiveAvgPool2D operation. |
|
|
Updates relevant entries according to the adadelta scheme. |
|
|
Updates relevant entries according to the adagrad scheme. |
|
|
Update var according to the proximal adagrad scheme. |
|
|
Updates relevant entries according to the adagradv2 scheme. |
|
|
Updates relevant entries according to the adamax scheme. |
|
|
Updates relevant entries according to the AddSign algorithm. |
|
|
Optimizer that implements the centered RMSProp algorithm. |
|
|
Updates relevant entries according to the FTRL scheme. |
|
|
Updates var by subtracting alpha * delta from it. |
|
|
Optimizer that implements the Momentum algorithm. |
|
|
Updates relevant entries according to the AddSign algorithm. |
|
|
Updates relevant entries according to the proximal adagrad algorithm. |
|
|
Updates relevant entries according to the FOBOS(Forward Backward Splitting) algorithm. |
|
|
Optimizer that implements the Root Mean Square prop(RMSProp) algorithm. |
|
|
Merges the duplicate value of the gradient and then updates parameters by the Adaptive Moment Estimation (Adam) algorithm. |
|
|
Merges the duplicate value of the gradient and then updates relevant entries according to the FTRL-proximal scheme. |
|
|
Merges the duplicate value of the gradient and then updates parameters by the Adaptive Moment Estimation (Adam) algorithm. |
|
|
Merges the duplicate value of the gradient and then updates relevant entries according to the proximal adagrad algorithm. |
|
|
Conducts LARS (layer-wise adaptive rate scaling) update on the sum of squares of gradient. |
|
|
Updates relevant entries according to the adagrad scheme. |
|
|
Updates relevant entries according to the adagrad scheme, one more epsilon attribute than SparseApplyAdagrad. |
|
|
Updates relevant entries according to the proximal adagrad algorithm. |
|
|
Computes the stochastic gradient descent. |
|
|
Updates relevant entries according to the FTRL-proximal scheme. |
|
|
Updates relevant entries according to the FTRL-proximal scheme. |
|
距离函数
接口名 |
概述 |
支持平台 |
Computes batched the p-norm distance between each pair of the two collections of row vectors. |
|
|
Computes the Levenshtein Edit Distance. |
|
|
Returns the matrix norm or vector norm of a given tensor. |
|
采样算子
接口名 |
概述 |
支持平台 |
计算与目标类完全匹配的抽样样本的位置id。 |
|
|
使用log-uniform(Zipfian)分布对一组类别进行采样。 |
|
|
使用均匀分布对一组类别进行采样。 |
|
图像处理
接口名 |
概述 |
支持平台 |
Decodes bounding boxes locations. |
|
|
Encodes bounding boxes locations. |
|
|
Checks bounding box. |
|
|
Extracts crops from the input image tensor and resizes them. |
|
|
Extract patches from input and put them in the "depth" output dimension. |
|
|
计算矩形的IOU,即真实区域和预测区域的交并比。 |
|
|
L2范数归一化算子。 |
|
|
When object detection problem is performed in the computer vision field, object detection algorithm generates a plurality of bounding boxes. |
|
|
Computes the Region of Interest (RoI) Align operator. |
|
文本处理
接口名 |
概述 |
支持平台 |
Updates log_probs with repeat n-grams. |
|
数学运算算子
逐元素运算
接口名 |
概述 |
支持平台 |
Returns absolute value of a tensor element-wise. |
|
|
Computes accumulation of all input tensors element-wise. |
|
|
Computes arccosine of input tensors element-wise. |
|
|
Computes inverse hyperbolic cosine of the inputs element-wise. |
|
|
两个输入Tensor逐元素相加。 |
|
|
Performs the element-wise division of tensor x1 by tensor x2, multiply the result by the scalar value and add it to input_data. |
|
|
Performs the element-wise product of tensor x1 and tensor x2, multiply the result by the scalar value and add it to input_data. |
|
|
逐元素将所有输入的Tensor相加。 |
|
|
Computes arcsine of input tensors element-wise. |
|
|
Computes inverse hyperbolic sine of the input element-wise. |
|
|
Computes the trigonometric inverse tangent of the input element-wise. |
|
|
Returns arctangent of x/y element-wise. |
|
|
Computes inverse hyperbolic tangent of the input element-wise. |
|
|
Computes BesselI0e of input element-wise. |
|
|
Computes BesselI1e of input element-wise. |
|
|
Returns bitwise and of two tensors element-wise. |
|
|
Returns bitwise or of two tensors element-wise. |
|
|
Returns bitwise xor of two tensors element-wise. |
|
|
向上取整函数。 |
|
|
Returns a tensor of complex numbers that are the complex conjugate of each element in input. |
|
|
Computes cosine of input element-wise. |
|
|
Computes hyperbolic cosine of input element-wise. |
|
|
逐元素计算第一输入Tensor除以第二输入Tensor的商。 |
|
|
Computes a safe divide and returns 0 if the y is zero. |
|
|
This operator uses equation to represent a tuple of tensors operations, you can use this operator to perform diagonal/reducesum/transpose/matmul/mul/inner product operations, etc. |
|
|
逐元素计算 x 的高斯误差函数。 |
|
|
Computes the complementary error function of x element-wise. |
|
|
Computes the inverse error function of input. |
|
|
Returns exponential of a tensor element-wise. |
|
|
Returns exponential then minus 1 of a tensor element-wise. |
|
|
向下取整函数。 |
|
|
Divides the first input tensor by the second input tensor element-wise and round down to the closest integer. |
|
|
Computes the remainder of division element-wise. |
|
|
Returns a new tensor containing imaginary value of the input. |
|
|
按元素计算输入Tensor的倒数。 |
|
|
Flips all bits of input tensor element-wise. |
|
|
Does a linear interpolation of two tensors start and end based on a float or tensor weight. |
|
|
逐元素返回Tensor的自然对数。 |
|
|
Returns the natural logarithm of one plus the input tensor element-wise. |
|
|
Computes the "logical AND" of two tensors element-wise. |
|
|
Computes the "logical NOT" of a tensor element-wise. |
|
|
Computes the "logical OR" of two tensors element-wise. |
|
|
Computes the remainder of dividing the first input tensor by the second input tensor element-wise. |
|
|
两个Tensor逐元素相乘。 |
|
|
Computes x * y element-wise. |
|
|
计算输入x的相反数并返回。 |
|
|
计算 x 中每个元素的 y 次幂。 |
|
|
Returns a Tensor that is the real part of the input. |
|
|
Divides the first input tensor by the second input tensor in floating-point type element-wise. |
|
|
Returns reciprocal of a tensor element-wise. |
|
|
Returns an integer that is closest to x element-wise. |
|
|
对输入数据进行四舍五入到最接近的整数数值。 |
|
|
Computes reciprocal of square root of input tensor element-wise. |
|
|
Performs sign on the tensor element-wise. |
|
|
Computes sine of the input element-wise. |
|
|
Computes hyperbolic sine of the input element-wise. |
|
|
计算输入Tensor的平方根。 |
|
|
Returns square of a tensor element-wise. |
|
|
Subtracts the second input tensor from the first input tensor element-wise and returns square of it. |
|
|
Returns the square sum of a tensor element-wise |
|
|
逐元素用第一个输入Tensor减去第二个输入Tensor。 |
|
|
Computes tangent of x element-wise. |
|
|
Divides the first input tensor by the second input tensor element-wise for integer types, negative numbers will round fractional quantities towards zero. |
|
|
Returns the remainder of division element-wise. |
|
|
Divides the first input tensor by the second input tensor element-wise. |
|
|
Computes the first input tensor multiplied by the logarithm of second input tensor element-wise. |
|
Reduction算子
接口名 |
概述 |
支持平台 |
返回输入Tensor在指定轴上的最大值索引。 |
|
|
根据指定的索引计算最大值,并返回索引和值。 |
|
|
返回输入Tensor在指定轴上的最小值索引。 |
|
|
根据指定的索引计算最小值,并返回索引和值。 |
|
|
Reduces a dimension of a tensor by the "logicalAND" of all elements in the dimension, by default. |
|
|
Reduces a dimension of a tensor by the "logical OR" of all elements in the dimension, by default. |
|
|
默认情况下,输出张量各维度上的最大值,以达到对所有维度进行归约的目的。 |
|
|
默认情况下,输出Tensor各维度上的平均值,以达到对所有维度进行归约的目的。 |
|
|
Reduces a dimension of a tensor by the minimum value in the dimension, by default. |
|
|
Reduces a dimension of a tensor by multiplying all elements in the dimension, by default. |
|
|
默认情况下,输出Tensor各维度上的和,以达到对所有维度进行归约的目的。 |
|
比较算子
接口名 |
概述 |
支持平台 |
Returns True if abs(x-y) is smaller than tolerance element-wise, otherwise False. |
|
|
Checks whether the data type and the shape of corresponding elements from tuples x and y are the same. |
|
|
逐元素比较两个输入Tensor是否相等。 |
|
|
Computes the number of the same elements of two tensors. |
|
|
按元素比较输入参数 \(x,y\) 的值,输出结果为bool值。 |
|
|
输入两个数据,逐元素比较第一个数据是否大于等于第二个数据。 |
|
|
Determines whether the targets are in the top k predictions. |
|
|
Determines which elements are finite for each position. |
|
|
Determines which elements are inf or -inf for each position |
|
|
Checks whether an object is an instance of a target type. |
|
|
判断输入数据每个位置上的值是否是Nan。 |
|
|
Checks whether this type is a sub-class of another type. |
|
|
Computes the boolean value of \(x < y\) element-wise. |
|
|
逐元素计算 \(x <= y\) 的bool值。 |
|
|
计算输入Tensor的最大值。 |
|
|
Computes the minimum of input tensors element-wise. |
|
|
计算两个Tensor是否不相等。 |
|
|
Checks whether the data type and shape of two tensors are the same. |
|
|
Finds values and indices of the k largest entries along the last dimension. |
|
线性代数算子
接口名 |
概述 |
支持平台 |
两个batch后的Tensor之间的矩阵乘法。 |
|
|
返回输入Tensor与偏置Tensor之和。 |
|
|
Ger product of x1 and x2. |
|
|
将矩阵 a 和矩阵 b 相乘。 |
|
|
计算输入矩阵的逆矩阵,如果输入矩阵不可逆,将产生错误或者返回一个未知结果。 |
|
Tensor操作算子
Tensor创建
接口名 |
概述 |
支持平台 |
创建一个与输入数据类型和shape都相同的Tensor,元素值为对应数据类型能表达的最小值。 |
|
|
创建一个主对角线上元素为1,其余元素为0的Tensor。 |
|
|
创建一个指定shape的Tensor,并用指定值填充。 |
|
|
Returns a Tensor whose value is num evenly spaced in the interval start and stop (including start and stop), and the length of the output Tensor is num. |
|
|
返回一个one-hot类型的Tensor。 |
|
|
创建一个值全为1的Tensor。 |
|
|
返回值为1的Tensor,shape和数据类型与输入相同。 |
|
|
创建一个值全为0的Tensor。 |
|
|
返回值为0的Tensor,其shape和数据类型与输入Tensor相同。 |
|
随机生成算子
接口名 |
概述 |
支持平台 |
根据概率密度函数分布生成随机正值浮点数x。 |
|
|
Returns a tensor sampled from the multinomial probability distribution located in the corresponding row of tensor input. |
|
|
Produces random non-negative integer values i, distributed according to discrete probability function: |
|
|
Generates random samples from a given categorical distribution tensor. |
|
|
Generates a random sample as index tensor with a mask tensor from a given tensor. |
|
|
Generates n random samples from 0 to n-1 without repeating. |
|
|
Generates random numbers according to the Laplace random number distribution (mean=0, lambda=1). |
|
|
Generates random numbers according to the standard Normal (or Gaussian) random number distribution. |
|
|
Produces random integer values i, uniformly distributed on the closed interval [minval, maxval), that is, distributed according to the discrete probability function: |
|
|
产生随机的浮点数,均匀分布在[0,1)范围内。 |
|
Array操作
接口名 |
概述 |
支持平台 |
Divides batch dimension with blocks and interleaves these blocks back into spatial dimensions. |
|
|
Divides batch dimension with blocks and interleaves these blocks back into spatial dimensions. |
|
|
将输入shape广播到目标shape。 |
|
|
转换输入Tensor的数据类型。 |
|
|
在指定轴上拼接输入Tensor。 |
|
|
Computes the cumulative product of the tensor x along axis. |
|
|
计算输入Tensor在指定轴上的累加和。 |
|
|
Returns the dimension index in the destination data format given in the source data format. |
|
|
Rearrange blocks of depth data into spatial dimensions. |
|
|
Returns the data type of the input tensor as mindspore.dtype. |
|
|
与 TensorShape 相同, DynamicShape 将会被 TensorShape 替换,请使用 TensorShape 。 |
Deprecated |
|
Adds an additional dimension to input_x at the given axis. |
|
|
Determines if the elements contain Not a Number(NaN), infinite or negative infinite. |
|
|
返回输入Tensor在指定 axis 上 input_indices 索引对应的元素组成的切片。 |
|
|
获取指定轴的元素。 |
|
|
根据索引获取输入Tensor指定位置上的元素。 |
|
|
Returns a rank 1 histogram counting the number of entries in values that fall into every bin. |
|
|
返回与输入具有相同shape和值的Tensor。 |
|
|
Adds tensor y to specified axis and indices of tensor x. |
|
|
Adds v into specified rows of x. |
|
|
Subtracts v into specified rows of x. |
|
|
Updates specified rows with values in v. |
|
|
Computes the inverse of an index permutation. |
|
|
将掩码位置为True的位置填充指定的值。 |
|
|
使用布尔掩码对输入进行选择得到一个新的一维Tensor。 |
|
|
从给定的Tensor生成网格矩阵。 |
|
|
Concats tensor in the first dimension. |
|
|
Computes element-wise population count(a.k.a bitsum, bitcount). |
|
|
Returns the rank of a tensor. |
|
|
基于给定的shape,对输入Tensor进行重新排列。 |
|
|
对输入序列进行部分反转。 |
|
|
对输入Tensor按指定维度反转。 |
|
|
根据指定的索引将更新值散布到新Tensor上。 |
|
|
Returns the selected elements, either from input \(x\) or input \(y\), depending on the condition. |
|
|
Returns the shape of the input tensor. |
|
|
返回一个Scalar,类型为整数,表示输入Tensor的大小,即Tensor中元素的总数。 |
|
|
根据指定shape对输入Tensor进行切片。 |
|
|
根据指定的轴对输入Tensor的元素进行排序。 |
|
|
SpaceToBatch is deprecated. |
弃用 |
|
Divides spatial dimensions into blocks and combines the block size with the original batch. |
|
|
Rearrange blocks of spatial data into depth. |
|
|
Returns a slice of input tensor based on the specified indices and axis. |
|
|
根据指定的轴和分割数量对输入Tensor进行分割。 |
|
|
Splits the input tensor into num_split tensors along the given dimension. |
|
|
返回删除指定 axis 中大小为1的维度后的Tensor。 |
|
|
在指定轴上对输入Tensor序列进行堆叠。 |
|
|
输入Tensor根据步长和索引进行切片提取。 |
|
|
根据指定的更新值和输入索引,通过相加运算更新输入Tensor的值。 |
|
|
根据指定的更新值和输入索引,通过最大值运算更新输入Tensor的值。 |
|
|
根据指定的更新值和输入索引,通过最小值运算更新输入Tensor的值。 |
|
|
根据指定的更新值和输入索引,通过减法运算更新输入Tensor的值。 |
|
|
根据指定的更新值和输入索引,通过更新操作更新输入Tensor的值。 |
|
|
返回输入Tensor的Shape。 |
|
|
按照给定的次数复制输入Tensor。 |
|
|
根据指定的排列对输入的Tensor进行数据重排。 |
|
|
Returns the unique elements of input tensor and also return a tensor containing the index of each value of input tensor corresponding to the output unique tensor. |
|
|
Returns unique elements and relative indexes in 1-D tensor, filled with padding num. |
|
|
Computes the maximum along segments of a tensor. |
|
|
Computes the minimum of a tensor along segments. |
|
|
Computes the product of a tensor along segments. |
|
|
Computes the sum of a tensor along segments. |
|
|
根据指定轴对输入矩阵进行分解。 |
|
类型转换
接口名 |
概述 |
支持平台 |
Casts the input scalar to another type. |
|
|
将Scalar转换为 Tensor 。 |
|
|
将Scalar转换为指定数据类型的 Tensor 。 |
|
|
将tuple转换为Tensor。 |
|
Parameter操作算子
接口名 |
概述 |
支持平台 |
Assigns Parameter with a value. |
|
|
Updates a Parameter by adding a value to it. |
|
|
Updates a Parameter by subtracting a value from it. |
|
|
根据指定更新值和输入索引通过加法运算更新输入数据的值。 |
|
|
根据指定更新值和输入索引通过除法运算更新输入数据的值。 |
|
|
根据指定更新值和输入索引通过最大值运算更新输入数据的值。 |
|
|
根据指定更新值和输入索引通过最小值运算更新输入数据的值。 |
|
|
根据指定更新值和输入索引通过乘法运算更新输入数据的值。 |
|
|
使用给定值通过加法运算和输入索引更新Tensor值。 |
|
|
使用给定值通过减法运算和输入索引更新Tensor值。 |
|
|
使用给定值以及输入索引更新输入数据的值。 |
|
|
使用给定值通过加法操作和输入索引来更新Tensor值。 |
|
|
使用给定更新值通过减法操作和输入索引来更新Tensor值。 |
|
|
使用给定的更新值和输入索引更新输入Tensor的值。 |
|
数据操作算子
接口名 |
概述 |
支持平台 |
返回数据集队列中的下一个元素。 |
|
通信算子
注意,以下列表中的接口需要先配置好通信环境变量。
针对Ascend设备,用户需要准备rank表,设置rank_id和device_id,详见 Ascend指导文档 。
针对GPU设备,用户需要准备host文件和mpi,详见 GPU指导文档 。
接口名 |
概述 |
支持平台 |
在指定的通信组中汇聚Tensor。 |
|
|
使用指定方式对通信组内的所有设备的Tensor数据进行规约操作,所有设备都得到相同的结果。 |
|
|
AlltoAll is a collective operation. |
|
|
对输入数据整组广播。 |
|
|
NeighborExchange is a collective operation. |
|
|
NeighborExchangeV2 is a collective operation. |
|
|
Operation options for reducing tensors. |
|
|
Reduces and scatters tensors from the specified communication group. |
|
调试算子
接口名 |
概述 |
支持平台 |
Outputs the tensor to protocol buffer through histogram summary operator. |
|
|
Outputs the image tensor to protocol buffer through image summary operator. |
|
|
Outputs a scalar to a protocol buffer through a scalar summary operator. |
|
|
Outputs a tensor to a protocol buffer through a tensor summary operator. |
|
|
将输入Tensor或string进行打印输出。 |
|
|
Allocates a flag to store the overflow status. |
|
|
Clears the flag which stores the overflow status. |
|
|
Updates the flag which is the output tensor of NPUAllocFloatStatus with the latest overflow status. |
|
稀疏算子
接口名 |
概述 |
支持平台 |
Multiplies sparse matrix A by dense matrix B. |
|
|
Converts a sparse representation into a dense tensor. |
|
其他算子
接口名 |
概述 |
支持平台 |
Depend is used for processing dependency operations. |
|
|
一个高阶函数,为输入函数生成梯度函数。 |
|
|
This operation is used as a tag to hook gradient in intermediate variables. |
|
|
对输入序列做集合运算。 |
|
|
Attaches callback to the graph node that will be invoked on the node's gradient. |
|
|
Map will apply the set operation on input sequences. |
|
|
Generates overloaded functions. |
|
|
Makes a partial function instance. |
|
算子信息注册
Class for AiCPU operator information register. |
|
Class used for generating the registration information for the func parameter of |
|
Ascend算子的dtype和format的多种组合。 |
|
Class for TBE operator information register. |
|
通过Primitive对象或Primitive名称,获取虚拟实现函数。 |
自定义算子
Custom 算子是MindSpore自定义算子的统一接口。 |