mindspore.ops.AllGather

class mindspore.ops.AllGather(group=GlobalComm.WORLD_COMM_GROUP)[源代码]

在指定的通信组中汇聚Tensor。

Note

集合中所有进程的Tensor必须具有相同的shape和格式。用户在使用之前需要设置环境变量,运行下面的例子。获取详情请点击官方网站 MindSpore

参数:

  • group (str) - 工作的通信组,默认值:”GlobalComm.WORLD_COMM_GROUP”(即Ascend平台为”hccl_world_group”,GPU平台为”nccl_world_group” )。

输入:

  • input_x (Tensor) - AllGather的输入,shape为 \((x_1, x_2, ..., x_R)\) 的Tensor。

输出:

Tensor,如果组中的device数量为N,则输出的shape为 \((N, x_1, x_2, ..., x_R)\)

异常:

  • TypeError - group 不是str。

  • ValueError - 调用进程的rank id大于本通信组的rank大小。

支持平台:

Ascend GPU

样例:

>>> # This example should be run with two devices. Refer to the tutorial > Distributed Training on mindspore.cn
>>> import numpy as np
>>> import mindspore.ops as ops
>>> import mindspore.nn as nn
>>> from mindspore.communication import init
>>> from mindspore import Tensor, context
>>>
>>> context.set_context(mode=context.GRAPH_MODE)
>>> init()
>>> class Net(nn.Cell):
...     def __init__(self):
...         super(Net, self).__init__()
...         self.allgather = ops.AllGather()
...
...     def construct(self, x):
...         return self.allgather(x)
...
>>> input_x = Tensor(np.ones([2, 8]).astype(np.float32))
>>> net = Net()
>>> output = net(input_x)
>>> print(output)
[[1. 1. 1. 1. 1. 1. 1. 1.]
 [1. 1. 1. 1. 1. 1. 1. 1.]
 [1. 1. 1. 1. 1. 1. 1. 1.]
 [1. 1. 1. 1. 1. 1. 1. 1.]]