mindspore.mint.prod
- mindspore.mint.prod(input, *, dtype=None)[源代码]
计算Tensor所有元素的乘积。
- 参数:
input (Tensor[Number]) - 输入Tensor,其数据类型为数值型。shape: \((N, *)\) ,其中 \(*\) 表示任意数量的附加维度。
- 关键字参数:
dtype (
mindspore.dtype
, 可选) - 期望输出Tensor的类型。默认值:None
。
- 返回:
Tensor。
- 异常:
TypeError - input 不是Tensor。
- 支持平台:
Ascend
样例:
>>> import mindspore >>> import numpy as np >>> from mindspore import Tensor, mint >>> x = Tensor(np.array([[[1, 1, 1, 1, 1, 1], [2, 2, 2, 2, 2, 2], [3, 3, 3, 3, 3, 3]], ... [[4, 4, 4, 4, 4, 4], [5, 5, 5, 5, 5, 5], [6, 6, 6, 6, 6, 6]], ... [[7, 7, 7, 7, 7, 7], [8, 8, 8, 8, 8, 8], [9, 9, 9, 9, 9, 9]]]), mindspore.float32) >>> output = mint.prod(x) >>> print(output) 2.2833798e+33 >>> print(output.shape) ()
- mindspore.mint.prod(input, dim, keepdim=False, *, dtype=None)[源代码]
默认情况下,使用指定维度的所有元素的乘积代替该维度的其他元素,以移除该维度。也可仅缩小该维度大小至1。 keepdim 控制输出和输入的维度是否相同。
- 参数:
input (Tensor[Number]) - 输入Tensor,其数据类型为数值型。shape: \((N, *)\) ,其中 \(*\) 表示任意数量的附加维度。
dim (int) - 要减少的维度。只允许常量值。假设 input 的秩为r,取值范围[-r,r)。
keepdim (bool) - 如果为
True
,则保留缩小的维度,大小为1。否则移除维度。默认值:False
。
- 关键字参数:
dtype (
mindspore.dtype
, 可选) - 期望输出Tensor的类型。默认值:None
。
- 返回:
Tensor。
如果 dim 为int,取值为1,并且 keepdim 为
False
,则输出的shape为 \((input_0, input_2, ..., input_R)\) 。
- 异常:
TypeError - input 不是Tensor。
TypeError - dim 不是int。
TypeError - keepdim 不是bool类型。
ValueError - dim 超出范围。
- 支持平台:
Ascend
样例:
>>> import mindspore >>> import numpy as np >>> from mindspore import Tensor, mint >>> x = Tensor(np.array([[[1, 1, 1, 1, 1, 1], [2, 2, 2, 2, 2, 2], [3, 3, 3, 3, 3, 3]], ... [[4, 4, 4, 4, 4, 4], [5, 5, 5, 5, 5, 5], [6, 6, 6, 6, 6, 6]], ... [[7, 7, 7, 7, 7, 7], [8, 8, 8, 8, 8, 8], [9, 9, 9, 9, 9, 9]]]), mindspore.float32) >>> output = mint.prod(x, 0, True) >>> print(output) [[[ 28. 28. 28. 28. 28. 28.] [ 80. 80. 80. 80. 80. 80.] [162. 162. 162. 162. 162. 162.]]]