mindspore.mint.sum

查看源文件
mindspore.mint.sum(input, *, dtype=None)[源代码]

计算Tensor所有元素的和。

参数:
  • input (Tensor) - 输入Tensor。

关键字参数:
  • dtype (mindspore.dtype, 可选) - 期望输出Tensor的类型。默认值: None

返回:

Tensor, input 所有元素的和。

异常:
  • TypeError - input 不是Tensor类型。

支持平台:

Ascend

样例:

>>> import mindspore
>>> import numpy as np
>>> from mindspore import Tensor, mint
>>> from mindspore import dtype as mstype
>>> x = Tensor(np.array([[[1, 1, 1, 1, 1, 1], [2, 2, 2, 2, 2, 2], [3, 3, 3, 3, 3, 3]],
...                      [[4, 4, 4, 4, 4, 4], [5, 5, 5, 5, 5, 5], [6, 6, 6, 6, 6, 6]],
...                      [[7, 7, 7, 7, 7, 7], [8, 8, 8, 8, 8, 8], [9, 9, 9, 9, 9, 9]]]), mstype.float32)
>>> out = mint.sum(x)
>>> print(out)
270.0
mindspore.mint.sum(input, dim, keepdim=False, *, dtype=None)[源代码]

计算Tensor指定维度元素的和。

说明

Tensor类型的 dim 仅用作兼容旧版本,不推荐使用。

参数:
  • input (Tensor) - 输入Tensor。

  • dim (Union[int, tuple(int), list(int), Tensor]) - 求和的维度。 如果 dim 为int组成的tuple或list,将对tuple中的所有维度求和,取值范围必须在 \([-input.ndim, input.ndim)\)

  • keepdim (bool) - 是否保留输出Tensor的维度,如果为 True ,保持对应的维度且长度为1。如果为 False ,不保持维度。默认值: False

关键字参数:
  • dtype (mindspore.dtype, 可选) - 期望输出Tensor的类型。默认值: None

返回:

Tensor, input 指定维度的和。

异常:
  • TypeError - input 不是Tensor类型。

  • TypeError - dim 类型不是int,tulpe(int),list(int)或Tensor。

  • ValueError - dim 取值不在 \([-input.ndim, input.ndim)\) 范围。

  • TypeError - keepdim 不是bool类型。

支持平台:

Ascend

样例:

>>> import mindspore
>>> import numpy as np
>>> from mindspore import Tensor, mint
>>> from mindspore import dtype as mstype
>>> x = Tensor(np.array([[[1, 1, 1, 1, 1, 1], [2, 2, 2, 2, 2, 2], [3, 3, 3, 3, 3, 3]],
...                      [[4, 4, 4, 4, 4, 4], [5, 5, 5, 5, 5, 5], [6, 6, 6, 6, 6, 6]],
...                      [[7, 7, 7, 7, 7, 7], [8, 8, 8, 8, 8, 8], [9, 9, 9, 9, 9, 9]]]), mstype.float32)
>>> out = mint.sum(x)
>>> print(out)
270.0
>>> out = mint.sum(x, dim=2)
>>> print(out)
[[ 6. 12. 18.]
 [24. 30. 36.]
 [42. 48. 54.]]
>>> out = mint.sum(x, dim=2, keepdim=True)
>>> print(out)
[[[ 6.]
  [12.]
  [18.]]
 [[24.]
  [30.]
  [36.]]
 [[42.]
  [48.]
  [54.]]]