mindspore.Tensor.chunk
- Tensor.chunk(chunks, dim=0) Tuple of Tensors
Cut the self Tensor into chunks sub-tensors along the specified dimension.
Note
This function may return less than the specified number of chunks!
Warning
This is an experimental API that is subject to change or deletion.
- Parameters
- Returns
A tuple of sub-tensors.
- Raises
TypeError – The sum of chunks is not int.
TypeError – If argument dim is not int.
ValueError – If argument dim is out of range of \([-self.ndim, self.ndim)\) .
ValueError – If argument chunks is not positive number.
- Supported Platforms:
Ascend
Examples
>>> import numpy as np >>> import mindspore >>> from mindspore import Tensor >>> input_x = Tensor(np.arange(9).astype("float32")) >>> output = input_x.chunk(3, dim=0) >>> print(output) (Tensor(shape=[3], dtype=Float32, value= [ 0.00000000e+00, 1.00000000e+00, 2.00000000e+00]), Tensor(shape=[3], dtype=Float32, value= [ 3.00000000e+00, 4.00000000e+00, 5.00000000e+00]), Tensor(shape=[3], dtype=Float32, value= [ 6.00000000e+00, 7.00000000e+00, 8.00000000e+00]))
- Tensor.chunk(chunks, axis=0) Tuple of Tensors
Cut the self Tensor into chunks sub-tensors along the specified axis.
Note
This function may return less than the specified number of chunks!
- Parameters
- Returns
A tuple of sub-tensors.
- Raises
TypeError – The sum of chunks is not int.
TypeError – If argument axis is not int.
ValueError – If argument axis is out of range of \([-self.ndim, self.ndim)\) .
ValueError – If argument chunks is not positive number.
- Supported Platforms:
Ascend
GPU
CPU
Examples
>>> import numpy as np >>> from mindspore import Tensor >>> input_x = Tensor(np.arange(9).astype("float32")) >>> output = input_x.chunk(3, axis=0) >>> print(output) (Tensor(shape=[3], dtype=Float32, value= [ 0.00000000e+00, 1.00000000e+00, 2.00000000e+00]), Tensor(shape=[3], dtype=Float32, value= [ 3.00000000e+00, 4.00000000e+00, 5.00000000e+00]), Tensor(shape=[3], dtype=Float32, value= [ 6.00000000e+00, 7.00000000e+00, 8.00000000e+00]))