mindspore.Tensor.clamp
- Tensor.clamp(min=None, max=None) Tensor
Clamps tensor values between the specified minimum value and maximum value.
Limits the value of \(self\) to a range, whose lower limit is min and upper limit is max .
\[\begin{split}out_i= \left\{ \begin{array}{align} max & \text{ if } self_i\ge max \\ self_i & \text{ if } min \lt self_i \lt max \\ min & \text{ if } self_i \le min \\ \end{array}\right.\end{split}\]Note
min and max cannot be None at the same time;
When min is None and max is not None, the elements in Tensor larger than max will become max;
When min is not None and max is None, the elements in Tensor smaller than min will become min;
If min is greater than max, the value of all elements in Tensor will be set to max;
The data type of self, min and max should support implicit type conversion and cannot be bool type.
- Parameters
- Returns
Tensor, a clipped Tensor. The data type and shape are the same as self.
- Raises
ValueError – If both min and max are None.
TypeError – If the type of self is not Tensor.
TypeError – If the type of min is not in None, Tensor, float or int.
TypeError – If the type of max is not in None, Tensor, float or int.
- Supported Platforms:
Ascend
GPU
CPU
Examples
>>> # case 1: the data type of input is Tensor >>> import mindspore >>> from mindspore import Tensor >>> import numpy as np >>> min_value = Tensor(5, mindspore.float32) >>> max_value = Tensor(20, mindspore.float32) >>> input = Tensor(np.array([[1., 25., 5., 7.], [4., 11., 6., 21.]]), mindspore.float32) >>> output = input.clamp(min_value, max_value) >>> print(output) [[ 5. 20. 5. 7.] [ 5. 11. 6. 20.]] >>> # case 2: the data type of input is number >>> import mindspore >>> from mindspore import Tensor >>> import numpy as np >>> min_value = 5 >>> max_value = 20 >>> input = Tensor(np.array([[1., 25., 5., 7.], [4., 11., 6., 21.]]), mindspore.float32) >>> output = input.clamp(min_value, max_value) >>> print(output) [[ 5. 20. 5. 7.] [ 5. 11. 6. 20.]]