Document feedback

Question document fragment

When a question document fragment contains a formula, it is displayed as a space.

Submission type
issue

It's a little complicated...

I'd like to ask someone.

Please select the submission type

Problem type
Specifications and Common Mistakes

- Specifications and Common Mistakes:

- Misspellings or punctuation mistakes,incorrect formulas, abnormal display.

- Incorrect links, empty cells, or wrong formats.

- Chinese characters in English context.

- Minor inconsistencies between the UI and descriptions.

- Low writing fluency that does not affect understanding.

- Incorrect version numbers, including software package names and version numbers on the UI.

Usability

- Usability:

- Incorrect or missing key steps.

- Missing main function descriptions, keyword explanation, necessary prerequisites, or precautions.

- Ambiguous descriptions, unclear reference, or contradictory context.

- Unclear logic, such as missing classifications, items, and steps.

Correctness

- Correctness:

- Technical principles, function descriptions, supported platforms, parameter types, or exceptions inconsistent with that of software implementation.

- Incorrect schematic or architecture diagrams.

- Incorrect commands or command parameters.

- Incorrect code.

- Commands inconsistent with the functions.

- Wrong screenshots.

- Sample code running error, or running results inconsistent with the expectation.

Risk Warnings

- Risk Warnings:

- Lack of risk warnings for operations that may damage the system or important data.

Content Compliance

- Content Compliance:

- Contents that may violate applicable laws and regulations or geo-cultural context-sensitive words and expressions.

- Copyright infringement.

Please select the type of question

Problem description

Describe the bug so that we can quickly locate the problem.

mindspore.Tensor.chunk

Tensor.chunk(chunks, dim=0) Tuple of Tensors

Cut the self Tensor into chunks sub-tensors along the specified dimension.

Note

This function may return less than the specified number of chunks!

Warning

This is an experimental API that is subject to change or deletion.

Parameters
  • chunks (int) – Number of sub-tensors to cut.

  • dim (int, optional) – Specify the dimensions that you want to split. Default: 0 .

Returns

A tuple of sub-tensors.

Raises
  • TypeError – The sum of chunks is not int.

  • TypeError – If argument dim is not int.

  • ValueError – If argument dim is out of range of [self.ndim,self.ndim) .

  • ValueError – If argument chunks is not positive number.

Supported Platforms:

Ascend

Examples

>>> import numpy as np
>>> import mindspore
>>> from mindspore import Tensor
>>> input_x = Tensor(np.arange(9).astype("float32"))
>>> output = input_x.chunk(3, dim=0)
>>> print(output)
(Tensor(shape=[3], dtype=Float32, value= [ 0.00000000e+00,  1.00000000e+00,  2.00000000e+00]),
    Tensor(shape=[3], dtype=Float32, value= [ 3.00000000e+00,  4.00000000e+00,  5.00000000e+00]),
    Tensor(shape=[3], dtype=Float32, value= [ 6.00000000e+00,  7.00000000e+00,  8.00000000e+00]))
Tensor.chunk(chunks, axis=0) Tuple of Tensors

Cut the self Tensor into chunks sub-tensors along the specified axis.

Note

This function may return less than the specified number of chunks!

Parameters
  • chunks (int) – Number of sub-tensors to cut.

  • axis (int, optional) – Specify the dimensions that you want to split. Default: 0 .

Returns

A tuple of sub-tensors.

Raises
  • TypeError – The sum of chunks is not int.

  • TypeError – If argument axis is not int.

  • ValueError – If argument axis is out of range of [self.ndim,self.ndim) .

  • ValueError – If argument chunks is not positive number.

Supported Platforms:

Ascend GPU CPU

Examples

>>> import numpy as np
>>> from mindspore import Tensor
>>> input_x = Tensor(np.arange(9).astype("float32"))
>>> output = input_x.chunk(3, axis=0)
>>> print(output)
(Tensor(shape=[3], dtype=Float32, value= [ 0.00000000e+00,  1.00000000e+00,  2.00000000e+00]),
    Tensor(shape=[3], dtype=Float32, value= [ 3.00000000e+00,  4.00000000e+00,  5.00000000e+00]),
    Tensor(shape=[3], dtype=Float32, value= [ 6.00000000e+00,  7.00000000e+00,  8.00000000e+00]))