mindspore.nn.SampledSoftmaxLoss

class mindspore.nn.SampledSoftmaxLoss(num_sampled, num_classes, num_true=1, sampled_values=None, remove_accidental_hits=True, seed=0, reduction="none")[source]

Computes the sampled softmax training loss. This operator can accelerate the training of the softmax classifier over a large number of classes. It is generally an underestimate of the full softmax loss.

Parameters
  • num_sampled (int) – The number of classes to randomly sample per batch.

  • num_classes (int) – The number of possible classes.

  • num_true (int) – The number of labels classes per training example. Default: 1.

  • sampled_values (Union[list, tuple]) – List or tuple of (sampled_candidates, true_expected_count, sampled_expected_count) returned by a *CandidateSampler function. Default to None, UniformCandidateSampler is applied.

  • remove_accidental_hits (bool) – Whether to remove “accidental hits” where a sampled class equals to one of the labels classes. Default: True.

  • seed (int) – Random seed for candidate sampling. Default: 0

  • reduction (str) – Type of reduction to be applied to loss. The optional values are “mean”, “sum”, and “none”. If “none”, do not perform reduction. Default: “none”.

Inputs:
  • weights (Tensor) - Tensor of shape \((C, dim)\).

  • bias (Tensor) - Tensor of shape \((C,)\). The class biases.

  • labels (Tensor) - Tensor of shape \((N, num\_true)\), type int64, int32. The labels classes.

  • logits (Tensor) - Tensor of shape \((N, dim)\). The forward activations of the input network.

Outputs:

Tensor or Scalar, if reduction is ‘none’, then output is a tensor with shape \((N,)\). Otherwise, the output is a scalar.

Raises
  • TypeError – If sampled_values is not a list or tuple.

  • TypeError – If dtype of labels is neither int32 not int64.

  • ValueError – If reduction is not one of ‘none’, ‘mean’, ‘sum’.

  • ValueError – If num_sampled or num_true is greater than num_classes.

  • ValueError – If length of sampled_values is not equal to 3.

Supported Platforms:

GPU

Examples

>>> mindspore.set_seed(1)
>>> loss = nn.SampledSoftmaxLoss(num_sampled=4, num_classes=7, num_true=1)
>>> weights = Tensor(np.random.randint(0, 9, [7, 10]), mindspore.float32)
>>> biases = Tensor(np.random.randint(0, 9, [7]), mindspore.float32)
>>> labels = Tensor([0, 1, 2])
>>> logits = Tensor(np.random.randint(0, 9, [3, 10]), mindspore.float32)
>>> output = loss(weights, biases, labels, logits)
>>> print(output)
[4.6051701e+01 1.4000047e+01 6.1989022e-06]