mindspore.numpy
Numpy-like interfaces in mindspore.
Examples
>>> import mindspore.numpy as np
Note
array_ops.py defines all the array operation interfaces.
array_creations.py defines all the array generation interfaces.
math_ops.py defines all the math operations on tensors.
logic_ops.py defines all the logical operations on tensors.
dtypes.py defines all the mindspore.numpy dtypes (mainly redirected from mindspore)
Array Generation
API Name |
Description |
Supported Platforms |
Returns evenly spaced values within a given interval. |
|
|
Creates a tensor. |
|
|
Converts the input to tensor. |
|
|
Similar to asarray, converts the input to a float tensor. |
|
|
Returns the Bartlett window. |
|
|
Returns the Blackman window. |
|
|
Returns a tensor copy of the given object. |
|
|
Extracts a diagonal or construct a diagonal array. |
|
|
Returns the indices to access the main diagonal of an array. |
|
|
Creates a two-dimensional array with the flattened input as a diagonal. |
|
|
Returns specified diagonals. |
|
|
Returns a new array of given shape and type, without initializing entries. |
|
|
Returns a new array with the same shape and type as a given array. |
|
|
Returns a 2-D tensor with ones on the diagonal and zeros elsewhere. |
|
|
Returns a new tensor of given shape and type, filled with fill_value. |
|
|
Returns a full array with the same shape and type as a given array. |
|
|
Returns numbers spaced evenly on a log scale (a geometric progression). |
|
|
Returns the Hamming window. |
|
|
Returns the Hanning window. |
|
|
Function to calculate only the edges of the bins used by the histogram function. |
|
|
Returns the identity tensor. |
|
|
Returns an array representing the indices of a grid. |
|
|
Constructs an open mesh from multiple sequences. |
|
|
Returns evenly spaced values within a given interval. |
|
|
Returns numbers spaced evenly on a log scale. |
|
|
Returns coordinate matrices from coordinate vectors. |
|
|
mgrid is an |
|
|
ogrid is an |
|
|
Returns a new tensor of given shape and type, filled with ones. |
|
|
Returns an array of ones with the same shape and type as a given array. |
|
|
Pads an array. |
|
|
Returns the sum along diagonals of the array. |
|
|
Returns a tensor with ones at and below the given diagonal and zeros elsewhere. |
|
|
Returns a lower triangle of a tensor. |
|
|
Returns the indices for the lower-triangle of an (n, m) array. |
|
|
Returns the indices for the lower-triangle of arr. |
|
|
Returns an upper triangle of a tensor. |
|
|
Returns the indices for the upper-triangle of an (n, m) array. |
|
|
Returns the indices for the upper-triangle of arr. |
|
|
Generates a Vandermonde matrix. |
|
|
Returns a new tensor of given shape and type, filled with zeros. |
|
|
Returns an array of zeros with the same shape and type as a given array. |
|
Array Operation
API Name |
Description |
Supported Platforms |
Appends values to the end of a tensor. |
|
|
Applies a function to 1-D slices along the given axis. |
|
|
Applies a function repeatedly over multiple axes. |
|
|
Splits a tensor into multiple sub-tensors. |
|
|
Returns a string representation of the data in an array. |
|
|
Converts inputs to arrays with at least one dimension. |
|
|
Reshapes inputs as arrays with at least two dimensions. |
|
|
Reshapes inputs as arrays with at least three dimensions. |
|
|
Broadcasts any number of arrays against each other. |
|
|
Broadcasts an array to a new shape. |
|
|
Construct an array from an index array and a list of arrays to choose from. |
|
|
Stacks 1-D tensors as columns into a 2-D tensor. |
|
|
Joins a sequence of tensors along an existing axis. |
|
|
Splits a tensor into multiple sub-tensors along the 3rd axis (depth). |
|
|
Stacks tensors in sequence depth wise (along the third axis). |
|
|
Expands the shape of a tensor. |
|
|
Reverses the order of elements in an array along the given axis. |
|
|
Flips the entries in each row in the left/right direction. |
|
|
Flips the entries in each column in the up/down direction. |
|
|
Splits a tensor into multiple sub-tensors horizontally (column-wise). |
|
|
Stacks tensors in sequence horizontally. |
|
|
Moves axes of an array to new positions. |
|
|
Evaluates a piecewise-defined function. |
|
|
Returns a contiguous flattened tensor. |
|
|
Repeats elements of an array. |
|
|
Reshapes a tensor without changing its data. |
|
|
Rolls a tensor along given axes. |
|
|
Rolls the specified axis backwards, until it lies in the given position. |
|
|
Rotates a tensor by 90 degrees in the plane specified by axes. |
|
|
Returns an array drawn from elements in choicelist, depending on conditions. |
|
|
Returns the number of elements along a given axis. |
|
|
Splits a tensor into multiple sub-tensors along the given axis. |
|
|
Removes single-dimensional entries from the shape of a tensor. |
|
|
Joins a sequence of arrays along a new axis. |
|
|
Interchanges two axes of a tensor. |
|
|
Takes elements from an array along an axis. |
|
|
Takes values from the input array by matching 1d index and data slices. |
|
|
Constructs an array by repeating a the number of times given by reps. |
|
|
Reverses or permutes the axes of a tensor; returns the modified tensor. |
|
|
Finds the unique elements of a tensor. |
|
|
Converts a flat index or array of flat indices into a tuple of coordinate arrays. |
|
|
Splits a tensor into multiple sub-tensors vertically (row-wise). |
|
|
Stacks tensors in sequence vertically. |
|
|
Returns elements chosen from x or y depending on condition. |
|
Logic
API Name |
Description |
Supported Platforms |
Returns True if input arrays have same shapes and all elements equal. |
|
|
Returns True if input arrays are shape consistent and all elements equal. |
|
|
Returns the truth value of |
|
|
Returns the truth value of |
|
|
Returns the truth value of |
|
|
Tests whether each element of a 1-D array is also present in a second array. |
|
|
Returns a boolean tensor where two tensors are element-wise equal within a tolerance. |
|
|
Tests element-wise for finiteness (not infinity or not Not a Number). |
|
|
Calculates element in test_elements, broadcasting over element only. |
|
|
Tests element-wise for positive or negative infinity. |
|
|
Tests element-wise for NaN and return result as a boolean array. |
|
|
Tests element-wise for negative infinity, returns result as bool array. |
|
|
Tests element-wise for positive infinity, returns result as bool array. |
|
|
Returns True if the type of element is a scalar type. |
|
|
Returns the truth value of |
|
|
Returns the truth value of |
|
|
Computes the truth value of x1 AND x2 element-wise. |
|
|
Computes the truth value of NOT a element-wise. |
|
|
Computes the truth value of x1 OR x2 element-wise. |
|
|
Computes the truth value of x1 XOR x2, element-wise. |
|
|
Returns (x1 != x2) element-wise. |
|
|
Returns element-wise True where signbit is set (less than zero). |
|
|
Tests whether any array element along a given axis evaluates to True. |
|
Math
API Name |
Description |
Supported Platforms |
Calculates the absolute value element-wise. |
|
|
Adds arguments element-wise. |
|
|
Returns the maximum of an array or maximum along an axis. |
|
|
Returns the minimum of an array or minimum along an axis. |
|
|
Trigonometric inverse cosine, element-wise. |
|
|
Inverse hyperbolic cosine, element-wise. |
|
|
Inverse sine, element-wise. |
|
|
Inverse hyperbolic sine element-wise. |
|
|
Trigonometric inverse tangent, element-wise. |
|
|
Element-wise arc tangent of \(x1/x2\) choosing the quadrant correctly. |
|
|
Inverse hyperbolic tangent element-wise. |
|
|
Returns the indices of the maximum values along an axis. |
|
|
Returns the indices of the minimum values along an axis. |
|
|
Evenly round to the given number of decimals. |
|
|
Computes the weighted average along the specified axis. |
|
|
Count number of occurrences of each value in array of non-negative ints. |
|
|
Computes the bit-wise AND of two arrays element-wise. |
|
|
Computes the bit-wise OR of two arrays element-wise. |
|
|
Computes the bit-wise XOR of two arrays element-wise. |
|
|
Returns the cube-root of a tensor, element-wise. |
|
|
Returns the ceiling of the input, element-wise. |
|
|
Clips (limits) the values in an array. |
|
|
Returns the discrete, linear convolution of two one-dimensional sequences. |
|
|
Changes the sign of x1 to that of x2, element-wise. |
|
|
Returns Pearson product-moment correlation coefficients. |
|
|
Cross-correlation of two 1-dimensional sequences. |
|
|
Cosine element-wise. |
|
|
Hyperbolic cosine, element-wise. |
|
|
Counts the number of non-zero values in the tensor x. |
|
|
Estimates a covariance matrix, given data and weights. |
|
|
Returns the cross product of two (arrays of) vectors. |
|
|
Returns the cumulative product of elements along a given axis. |
|
|
Returns the cumulative sum of the elements along a given axis. |
|
|
Converts angles from degrees to radians. |
|
|
Calculates the n-th discrete difference along the given axis. |
|
|
Returns the indices of the bins to which each value in input array belongs. |
|
|
Returns a true division of the inputs, element-wise. |
|
|
Returns element-wise quotient and remainder simultaneously. |
|
|
Returns the dot product of two arrays. |
|
|
The differences between consecutive elements of a tensor. |
|
|
Calculates the exponential of all elements in the input array. |
|
|
Calculates |
|
|
Calculates |
|
|
Rounds to nearest integer towards zero. |
|
|
First array elements raised to powers from second array, element-wise. |
|
|
Returns the floor of the input, element-wise. |
|
|
Returns the largest integer smaller or equal to the division of the inputs. |
|
|
Returns the element-wise remainder of division. |
|
|
Returns the greatest common divisor of |
|
|
Returns the gradient of a N-dimensional array. |
|
|
Computes the Heaviside step function. |
|
|
Computes the histogram of a dataset. |
|
|
Computes the multidimensional histogram of some data. |
|
|
Computes the multidimensional histogram of some data. |
|
|
Given the “legs” of a right triangle, returns its hypotenuse. |
|
|
Returns the inner product of two tensors. |
|
|
One-dimensional linear interpolation for monotonically increasing sample points. |
|
|
Computes bit-wise inversion, or bit-wise NOT, element-wise. |
|
|
Kronecker product of two arrays. |
|
|
Returns the lowest common multiple of |
|
|
Returns the natural logarithm, element-wise. |
|
|
Base-10 logarithm of x. |
|
|
Returns the natural logarithm of one plus the input array, element-wise. |
|
|
Base-2 logarithm of x. |
|
|
Logarithm of the sum of exponentiations of the inputs. |
|
|
Logarithm of the sum of exponentiations of the inputs in base of 2. |
|
|
Returns the matrix product of two arrays. |
|
|
Raises a square matrix to the (integer) power n. |
|
|
Returns the element-wise maximum of array elements. |
|
|
Computes the arithmetic mean along the specified axis. |
|
|
Element-wise minimum of tensor elements. |
|
|
Computes the dot product of two or more arrays in a single function call, while automatically selecting the fastest evaluation order. |
|
|
Multiplies arguments element-wise. |
|
|
Return the cumulative sum of array elements over a given axis treating Not a Numbers (NaNs) as zero. |
|
|
Return the maximum of an array or maximum along an axis, ignoring any NaNs. |
|
|
Computes the arithmetic mean along the specified axis, ignoring NaNs. |
|
|
Returns the minimum of array elements over a given axis, ignoring any NaNs. |
|
|
Computes the standard deviation along the specified axis, while ignoring NaNs. |
|
|
Returns the sum of array elements over a given axis treating Not a Numbers (NaNs) as zero. |
|
|
Computes the variance along the specified axis, while ignoring NaNs. |
|
|
Numerical negative, element-wise. |
|
|
Matrix or vector norm. |
|
|
Computes the outer product of two vectors. |
|
|
Finds the sum of two polynomials. |
|
|
Returns the derivative of the specified order of a polynomial. |
|
|
Returns an antiderivative (indefinite integral) of a polynomial. |
|
|
Finds the product of two polynomials. |
|
|
Difference (subtraction) of two polynomials. |
|
|
Evaluates a polynomial at specific values. |
|
|
Numerical positive, element-wise. |
|
|
First array elements raised to powers from second array, element-wise. |
|
|
Returns the data type with the smallest size and smallest scalar kind. |
|
|
Range of values (maximum - minimum) along an axis. |
|
|
Converts angles from radians to degrees. |
|
|
Converts angles from degrees to radians. |
|
|
Converts a tuple of index arrays into an array of flat indices, applying boundary modes to the multi-index. |
|
|
Returns the reciprocal of the argument, element-wise. |
|
|
Returns element-wise remainder of division. |
|
|
Returns the type that results from applying the type promotion rules to the arguments. |
|
|
Rounds elements of the array to the nearest integer. |
|
|
Finds indices where elements should be inserted to maintain order. |
|
|
Returns an element-wise indication of the sign of a number. |
|
|
Trigonometric sine, element-wise. |
|
|
Hyperbolic sine, element-wise. |
|
|
Returns the non-negative square-root of an array, element-wise. |
|
|
Returns the element-wise square of the input. |
|
|
Computes the standard deviation along the specified axis. |
|
|
Subtracts arguments, element-wise. |
|
|
Returns sum of array elements over a given axis. |
|
|
Computes tangent element-wise. |
|
|
Computes hyperbolic tangent element-wise. |
|
|
Computes tensor dot product along specified axes. |
|
|
Integrates along the given axis using the composite trapezoidal rule. |
|
|
Returns a true division of the inputs, element-wise. |
|
|
Returns the truncated value of the input, element-wise. |
|
|
Unwraps by changing deltas between values to |
|
|
Computes the variance along the specified axis. |
|