mindspore.nn.SoftMarginLoss

class mindspore.nn.SoftMarginLoss(reduction='mean')[source]

A loss class for two-class classification problems.

SoftMarginLoss creates a criterion that optimizes a two-class classification logistic loss between input tensor \(x\) and labels tensor \(y\) (containing 1 or -1).

\[\text{loss}(x, y) = \sum_i \frac{\log(1 + \exp(-y[i]*x[i]))}{\text{x.nelement}()}\]
Parameters

reduction (str) – Apply specific reduction method to the output: ‘none’, ‘mean’, ‘sum’. Default: “mean”.

Inputs:
  • logits (Tensor) - Predict data. Data type must be float16 or float32.

  • labels (Tensor) - Ground truth data, with the same type and shape as logits.

Outputs:

Tensor or Scalar, if reduction is “none”, its shape is the same as logits. Otherwise, a scalar value will be returned.

Raises
  • TypeError – If logits or labels is not a Tensor.

  • TypeError – If dtype of logits or labels is neither float16 nor float32.

  • ValueError – If shape of logits is not the same as labels.

  • ValueError – If reduction is not one of ‘none’, ‘mean’, ‘sum’.

Supported Platforms:

Ascend

Examples

>>> loss = ops.SoftMarginLoss()
>>> logits = Tensor(np.array([[0.3, 0.7], [0.5, 0.5]]), mindspore.float32)
>>> labels = Tensor(np.array([[-1, 1], [1, -1]]), mindspore.float32)
>>> output = loss(logits, labels)
>>> print(output)
0.6764238