mindquantum.core.gates.ThermalRelaxationChannel
- class mindquantum.core.gates.ThermalRelaxationChannel(t1: float, t2: float, gate_time: float, **kwargs)[source]
Thermal relaxation channel.
The thermal relaxation channel describes the thermal decoherence and dephasing of qubit when a quantum gate is applied, and is determined by T1, T2 and gate time.
The Choi-matrix representation of this channel is as below:
\[\begin{split}\begin{gather*} \epsilon(\rho) = \text{tr}_1 \left[ \Lambda \left( \rho^T \otimes I \right) \right], \Lambda=\begin{pmatrix} \epsilon_{T_1} & 0 & 0 & \epsilon_{T_2} \\ 0 & 1-\epsilon_{T_1} & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \epsilon_{T_2} & 0 & 0 & 1 \end{pmatrix} \\ \text{where}\ \epsilon_{T_1}=e^{-T_g/T_1}, \epsilon_{T_2}=e^{-T_g/T_2} \end{gather*}\end{split}\]Where \(\rho\) is quantum state as density matrix type; \(\Lambda\) is Choi matrix, \(T_1\) is thermal relaxation time of qubit, \(T_2\) is dephasing time of qubit, \(T_g\) is gate time.
- Parameters
Examples
>>> from mindquantum.core.gates import ThermalRelaxationChannel >>> from mindquantum.core.circuit import Circuit >>> t1 = 100000 >>> t2 = 50000 >>> gate_time = 35 >>> circ = Circuit() >>> circ += ThermalRelaxationChannel(t1, t2, gate_time).on(0) >>> print(circ) ╔═══════════════════════════════╗ q0: ──╢ TRC(t1=100000,t2=50000,tg=35) ╟─── ╚═══════════════════════════════╝