mindflow.cell.FNO2D
- class mindflow.cell.FNO2D(in_channels, out_channels, resolution, modes, channels=20, depths=4, mlp_ratio=4, compute_dtype=mstype.float32)[source]
The 2-dimensional Fourier Neural Operator (FNO2D) contains a lifting layer, multiple Fourier layers and a decoder layer. The details can be found in Fourier neural operator for parametric partial differential equations.
- Parameters
in_channels (int) – The number of channels in the input space.
out_channels (int) – The number of channels in the output space.
resolution (int) – The spatial resolution of the input.
modes (int) – The number of low-frequency components to keep.
channels (int) – The number of channels after dimension lifting of the input. Default:
20
.depths (int) – The number of FNO layers. Default:
4
.mlp_ratio (int) – The number of channels lifting ratio of the decoder layer. Default:
4
.compute_dtype (dtype.Number) – The computation type of dense. Default:
mindspore.common.dtype.float32
. Should bemindspore.common.dtype.float32
ormindspore.common.dtype.float32
. float32 is recommended for the GPU backend, float16 is recommended for the Ascend backend.
- Inputs:
x (Tensor) - Tensor of shape
.
- Outputs:
Tensor, the output of this FNO network.
output (Tensor) -Tensor of shape
.
- Raises
TypeError – If in_channels is not an int.
TypeError – If out_channels is not an int.
TypeError – If resolution is not an int.
TypeError – If modes is not an int.
ValueError – If modes is less than 1.
- Supported Platforms:
Ascend
GPU
Examples
>>> import numpy as np >>> from mindspore.common.initializer import initializer, Normal >>> from mindflow.cell.neural_operators import FNO2D >>> B, H, W, C = 32, 64, 64, 1 >>> input = initializer(Normal(), [B, H, W, C]) >>> net = FNO2D(in_channels=1, out_channels=1, resolution=64, modes=12) >>> output = net(input) >>> print(output.shape) (32, 64, 64, 1)