文档反馈

问题文档片段

问题文档片段包含公式时,显示为空格。

提交类型
issue

有点复杂...

找人问问吧。

请选择提交类型

问题类型
规范和低错类

- 规范和低错类:

- 错别字或拼写错误,标点符号使用错误、公式错误或显示异常。

- 链接错误、空单元格、格式错误。

- 英文中包含中文字符。

- 界面和描述不一致,但不影响操作。

- 表述不通顺,但不影响理解。

- 版本号不匹配:如软件包名称、界面版本号。

易用性

- 易用性:

- 关键步骤错误或缺失,无法指导用户完成任务。

- 缺少主要功能描述、关键词解释、必要前提条件、注意事项等。

- 描述内容存在歧义指代不明、上下文矛盾。

- 逻辑不清晰,该分类、分项、分步骤的没有给出。

正确性

- 正确性:

- 技术原理、功能、支持平台、参数类型、异常报错等描述和软件实现不一致。

- 原理图、架构图等存在错误。

- 命令、命令参数等错误。

- 代码片段错误。

- 命令无法完成对应功能。

- 界面错误,无法指导操作。

- 代码样例运行报错、运行结果不符。

风险提示

- 风险提示:

- 对重要数据或系统存在风险的操作,缺少安全提示。

内容合规

- 内容合规:

- 违反法律法规,涉及政治、领土主权等敏感词。

- 内容侵权。

问题描述

请勾选同意隐私声明

mindspore.ops.igamma

mindspore.ops.igamma(input, other)[源代码]

计算正则化的下层不完全伽马函数。 如果我们将 input 比作 aother 比作 x ,则正则化的下层不完全伽马函数可以表示成:

P(a,x)=Gamma(a,x)/Gamma(a)=1Q(a,x)

其中,

Gamma(a,x)=0xta1exptdt

为下层不完全伽马函数。

Q(a,x) 则为正则化的上层完全伽马函数。

警告

这是一个实验性API,后续可能修改或删除。

参数:
  • input (Tensor) - 输入Tensor,数据类型为float32或者float64。

  • other (Tensor) - 输入Tensor,数据类型为float32或者float64,与 input 保持一致。

返回:

Tensor,数据类型与 inputother 相同。

异常:
  • TypeError - 如果 input 或者 other 不是Tensor。

  • TypeError - 如果 other 的数据类型不是float32或者float64。

  • TypeError - 如果 other 的数据类型与 input 不相同。

  • ValueError - 如果 input 不能广播成shape与 other 相同的Tensor。

支持平台:

Ascend GPU CPU

样例:

>>> import numpy as np
>>> from mindspore import Tensor, ops
>>> a = Tensor(np.array([2.0, 4.0, 6.0, 8.0]).astype(np.float32))
>>> x = Tensor(np.array([2.0, 3.0, 4.0, 5.0]).astype(np.float32))
>>> output = ops.igamma(a, x)
>>> print(output)
[0.593994 0.35276785 0.21486944 0.13337152]