mindspore.dataset.vision.RandomCropDecodeResize
- class mindspore.dataset.vision.RandomCropDecodeResize(size, scale=(0.08, 1.0), ratio=(3.0 / 4.0, 4.0 / 3.0), interpolation=Inter.BILINEAR, max_attempts=10)[源代码]
“裁剪”、”解码”和”调整尺寸大小”的组合处理。该操作将在随机位置裁剪输入图像,以 RGB 模式对裁剪后的图像进行解码,并调整解码图像的尺寸大小。针对 JPEG 图像进行了优化, 可以获得更好的性能。
- 参数:
size (Union[int, Sequence[int]]) - 调整后图像的输出尺寸大小。大小值必须为正。 如果 size 是整数,则返回一个裁剪尺寸大小为 (size, size) 的正方形。 如果 size 是一个长度为 2 的序列,则以2个元素分别为高和宽放缩至(高度, 宽度)大小。
scale (Union[list, tuple], 可选) - 要裁剪的原始尺寸大小的各个尺寸的范围[min, max),必须为非负数。默认值:
(0.08, 1.0)
。ratio (Union[list, tuple], 可选) - 宽高比的范围 [min, max) 裁剪,必须为非负数。默认值:
(3. / 4., 4. / 3.)
。interpolation (
Inter
, 可选) - 图像插值方式。它可以是Inter.BILINEAR
、Inter.NEAREST
、Inter.BICUBIC
、Inter.AREA
、Inter.PILCUBIC
。默认值:Inter.BILINEAR
。Inter.BILINEAR: 双线性插值。
Inter.NEAREST: 最近邻插值。
Inter.BICUBIC: 双三次插值。
Inter.AREA: 像素区域插值。
Inter.PILCUBIC: Pillow库中实现的双三次插值,输入需为3通道格式。
max_attempts (int, 可选) - 生成随机裁剪位置的最大尝试次数,超过该次数时将使用中心裁剪, max_attempts 值必须为正数。默认值:
10
。
- 异常:
TypeError - 如果 size 不是int或Sequence[int]类型。
TypeError - 如果 scale 不是tuple或list类型。
TypeError - 如果 ratio 不是tuple或list类型。
TypeError - 如果 interpolation 不是
mindspore.dataset.vision.Inter
的类型。TypeError - 如果 max_attempts 不是int类型。
ValueError - 如果 size 不是正数。
ValueError - 如果 scale 为负数。
ValueError - 如果 ratio 为负数。
ValueError - 如果 max_attempts 不是正数。
RuntimeError - 如果输入图像不是一维序列。
- 支持平台:
CPU
样例:
>>> import mindspore.dataset as ds >>> import mindspore.dataset.vision as vision >>> from mindspore.dataset.vision import Inter >>> >>> resize_crop_decode_op = vision.RandomCropDecodeResize(size=(50, 75), ... scale=(0.25, 0.5), ... interpolation=Inter.NEAREST, ... max_attempts=5) >>> transforms_list = [resize_crop_decode_op] >>> image_folder_dataset = ds.ImageFolderDataset("/path/to/image_folder_dataset_directory") >>> image_folder_dataset = image_folder_dataset.map(operations=transforms_list, ... input_columns=["image"])
- 教程样例: