mindspore.nn.SmoothL1Loss

class mindspore.nn.SmoothL1Loss(beta=1.0, reduction='none')[源代码]

SmoothL1损失函数,如果预测值和目标值的逐个元素绝对误差小于设定阈值 beta 则用平方项,否则用绝对误差项。

给定两个输入 x, y,SmoothL1Loss定义如下:

Li={0.5(xiyi)2β,if |xiyi|<β|xiyi|0.5β,otherwise.

reduction 不是设定为 none 时,计算如下:

L={mean(Li),if reduction='mean';sum(Li),if reduction='sum'.

其中,β 代表阈值 beta

说明

参数:
  • beta (float) - 损失函数计算在L1Loss和L2Loss间变换的阈值。默认值:1.0。

  • reduction (str) - 缩减输出的方法。默认值:’none’。其他选项:’mean’和’sum’。

输入:
  • logits (Tensor) - 预测值,任意维度Tensor。数据类型为float16、float32或float64。

  • labels (Tensor) - 目标值,数据类型和shape与 logits 相同的Tensor。

输出:

Tensor。如果 reduction 为’none’,则输出为Tensor且与 logits 的shape相同。否则shape为 ()

异常:
  • TypeError - beta 不是float。

  • ValueError - reduction 不是’none’,’mean’和’sum’中的任意一个。

  • TypeError - logitslabels 不是Tensor。

  • TypeError - logitslabels 的数据类型不是float16,float32和float64中的任一者。

  • TypeError - logits 的数据类型与 labels 不同。

  • ValueError - beta 小于0。

  • ValueError - logits 的shape与 labels 不同。

支持平台:

Ascend GPU CPU

样例:

>>> loss = nn.SmoothL1Loss()
>>> logits = Tensor(np.array([1, 2, 3]), mindspore.float32)
>>> labels = Tensor(np.array([1, 2, 2]), mindspore.float32)
>>> output = loss(logits, labels)
>>> print(output)
[0.  0.  0.5]