mindspore.ops.scatter_mul
- mindspore.ops.scatter_mul(input_x, indices, updates)[源代码]
根据指定索引和更新值对 input_x 进行乘法更新。
说明
支持隐式类型转换、类型提升。
因Parameter对象不支持类型转换,当 input_x 为低精度数据类型时,会抛出异常。
updates 的shape为 indices.shape + input_x.shape[1:] 。
- 参数:
input_x (Union[Parameter, Tensor]) - 输入的parameter或tensor。
indices (Tensor) - 指定索引。
updates (Tensor) - 更新值。
- 返回:
Tensor
- 支持平台:
Ascend
GPU
CPU
样例:
>>> import numpy as np >>> import mindspore >>> input_x = mindspore.Parameter(mindspore.tensor([[1.0, 1.0, 1.0], ... [2.0, 2.0, 2.0]], mindspore.float32), name="x") >>> indices = mindspore.tensor([0, 1], mindspore.int32) >>> updates = mindspore.tensor([[2.0, 2.0, 2.0], [2.0, 2.0, 2.0]], mindspore.float32) >>> output = mindspore.ops.scatter_mul(input_x, indices, updates) >>> print(output) [[2. 2. 2.] [4. 4. 4.]] >>> # for input_x will be updated after the operation is completed. input_x need to be re-initialized. >>> input_x = mindspore.Parameter(mindspore.tensor(np.array([[1.0, 1.0, 1.0], ... [2.0, 2.0, 2.0]]), mindspore.float32), name="x") >>> # for indices = [[0, 1], [1, 1]] >>> # step 1: [0, 1] >>> # input_x[0] = [1.0, 1.0, 1.0] * [1.0, 1.0, 1.0] = [1.0, 1.0, 1.0] >>> # input_x[1] = [2.0, 2.0, 2.0] * [3.0, 3.0, 3.0] = [6.0, 6.0, 6.0] >>> # step 2: [1, 1] >>> # input_x[1] = [6.0, 6.0, 6.0] * [7.0, 7.0, 7.0] = [42.0, 42.0, 42.0] >>> # input_x[1] = [42.0, 42.0, 42.0] * [9.0, 9.0, 9.0] = [378.0, 378.0, 378.0] >>> indices = mindspore.tensor(np.array([[0, 1], [1, 1]]), mindspore.int32) >>> updates = mindspore.tensor(np.array([[[1.0, 1.0, 1.0], [3.0, 3.0, 3.0]], ... [[7.0, 7.0, 7.0], [9.0, 9.0, 9.0]]]), mindspore.float32) >>> output = mindspore.ops.scatter_mul(input_x, indices, updates) >>> print(output) [[ 1. 1. 1.] [378. 378. 378.]] >>> # for input_x will be updated after the operation is completed. input_x need to be re-initialized. >>> input_x = mindspore.Parameter(mindspore.tensor(np.array([[1.0, 1.0, 1.0], ... [2.0, 2.0, 2.0]]), mindspore.float32), name="x") >>> # for indices = [[1, 0], [1, 1]] >>> # step 1: [1, 0] >>> # input_x[0] = [1.0, 1.0, 1.0] * [3.0, 3.0, 3.0] = [3.0, 3.0, 3.0] >>> # input_x[1] = [2.0, 2.0, 2.0] * [1.0, 1.0, 1.0] = [2.0, 2.0, 2.0] >>> # step 2: [1, 1] >>> # input_x[1] = [2.0, 2.0, 2.0] * [7.0, 7.0, 7.0] = [14.0, 14.0, 14.0] >>> # input_x[1] = [14.0, 14.0, 14.0] * [9.0, 9.0, 9.0] = [126.0, 126.0, 126.0] >>> indices = mindspore.tensor(np.array([[1, 0], [1, 1]]), mindspore.int32) >>> updates = mindspore.tensor(np.array([[[1.0, 1.0, 1.0], [3.0, 3.0, 3.0]], ... [[7.0, 7.0, 7.0], [9.0, 9.0, 9.0]]]), mindspore.float32) >>> output = mindspore.ops.scatter_mul(input_x, indices, updates) >>> print(output) [[ 3. 3. 3.] [126. 126. 126.]] >>> # for input_x will be updated after the operation is completed. input_x need to be re-initialized. >>> input_x = mindspore.Parameter(mindspore.tensor(np.array([[1.0, 1.0, 1.0], ... [2.0, 2.0, 2.0]]), mindspore.float32), name="x") >>> # for indices = [[0, 1], [0, 1]] >>> # step 1: [0, 1] >>> # input_x[0] = [1.0, 1.0, 1.0] * [1.0, 1.0, 1.0] = [1.0, 1.0, 1.0] >>> # input_x[1] = [2.0, 2.0, 2.0] * [3.0, 3.0, 3.0] = [6.0, 6.0, 6.0] >>> # step 2: [0, 1] >>> # input_x[0] = [1.0, 1.0, 1.0] * [7.0, 7.0, 7.0] = [7.0, 7.0, 7.0] >>> # input_x[1] = [6.0, 6.0, 6.0] * [9.0, 9.0, 9.0] = [54.0, 54.0, 54.0] >>> indices = mindspore.tensor(np.array([[0, 1], [0, 1]]), mindspore.int32) >>> updates = mindspore.tensor(np.array([[[1.0, 1.0, 1.0], [3.0, 3.0, 3.0]], ... [[7.0, 7.0, 7.0], [9.0, 9.0, 9.0]]]), mindspore.float32) >>> output = mindspore.ops.scatter_mul(input_x, indices, updates) >>> print(output) [[ 7. 7. 7.] [54. 54. 54.]]