文档反馈

问题文档片段

问题文档片段包含公式时,显示为空格。

提交类型
issue

有点复杂...

找人问问吧。

PR

小问题,全程线上修改...

一键搞定!

请选择提交类型

问题类型
规范和低错类

- 规范和低错类:

- 错别字或拼写错误,标点符号使用错误、公式错误或显示异常。

- 链接错误、空单元格、格式错误。

- 英文中包含中文字符。

- 界面和描述不一致,但不影响操作。

- 表述不通顺,但不影响理解。

- 版本号不匹配:如软件包名称、界面版本号。

易用性

- 易用性:

- 关键步骤错误或缺失,无法指导用户完成任务。

- 缺少主要功能描述、关键词解释、必要前提条件、注意事项等。

- 描述内容存在歧义指代不明、上下文矛盾。

- 逻辑不清晰,该分类、分项、分步骤的没有给出。

正确性

- 正确性:

- 技术原理、功能、支持平台、参数类型、异常报错等描述和软件实现不一致。

- 原理图、架构图等存在错误。

- 命令、命令参数等错误。

- 代码片段错误。

- 命令无法完成对应功能。

- 界面错误,无法指导操作。

- 代码样例运行报错、运行结果不符。

风险提示

- 风险提示:

- 对重要数据或系统存在风险的操作,缺少安全提示。

内容合规

- 内容合规:

- 违反法律法规,涉及政治、领土主权等敏感词。

- 内容侵权。

请选择问题类型

问题描述

点击输入详细问题描述,以帮助我们快速定位问题。

mindspore.ops.ArgMinWithValue

查看源文件
class mindspore.ops.ArgMinWithValue(axis=0, keep_dims=False)[源代码]

在给定轴上计算输入Tensor的最小值,并且返回最小值和索引。

说明

在auto_parallel和semi_auto_parallel模式下,不能使用第一个输出索引。

警告

  • 如果有多个最小值,则取第一个最小值的索引。

  • axis 的取值范围为[-dims, dims - 1]。"dims"为 input 的维度长度。

参考 mindspore.ops.min()

参数:
  • axis (int) - 指定计算维度。默认值: 0

  • keep_dims (bool) - 表示是否减少维度。如果为 True ,则输出维度和输入维度相同。如果为 False ,则减少输出维度。默认值: False

输入:
  • input (Tensor) - 输入任意维度的Tensor。将输入Tensor的shape设为 (input1,input2,...,inputN) 。不支持复数类型。

输出:

tuple (Tensor),表示2个Tensor组成的tuple,包含对应的索引和输入Tensor的最小值。

  • index (Tensor) - 输入Tensor最小值的索引,数据类型为int64。如果 keep_dims 为True,则输出Tensor的shape为 (input1,input2,...,inputaxis1,1,inputaxis+1,...,inputN) 。否则,shape为 (input1,input2,...,inputaxis1,inputaxis+1,...,inputN)

  • values (Tensor) - 输入Tensor的最小值,其shape与 index 相同,数据类型与 input 相同。

异常:
  • TypeError - input 不是Tensor。

  • TypeError - keep_dims 不是bool。

  • TypeError - axis 不是int。

支持平台:

Ascend GPU CPU

样例:

>>> import mindspore
>>> import numpy as np
>>> from mindspore import Tensor, ops
>>> x = Tensor(np.array([0.0, 0.4, 0.6, 0.7, 0.1]), mindspore.float32)
>>> index, output = ops.ArgMinWithValue()(x)
>>> print(index, output)
0 0.0
>>> index, output = ops.ArgMinWithValue(keep_dims=True)(x)
>>> print(index, output)
[0] [0.0]