文档反馈

问题文档片段

问题文档片段包含公式时,显示为空格。

提交类型
issue

有点复杂...

找人问问吧。

PR

小问题,全程线上修改...

一键搞定!

请选择提交类型

问题类型
规范和低错类

- 规范和低错类:

- 错别字或拼写错误,标点符号使用错误、公式错误或显示异常。

- 链接错误、空单元格、格式错误。

- 英文中包含中文字符。

- 界面和描述不一致,但不影响操作。

- 表述不通顺,但不影响理解。

- 版本号不匹配:如软件包名称、界面版本号。

易用性

- 易用性:

- 关键步骤错误或缺失,无法指导用户完成任务。

- 缺少主要功能描述、关键词解释、必要前提条件、注意事项等。

- 描述内容存在歧义指代不明、上下文矛盾。

- 逻辑不清晰,该分类、分项、分步骤的没有给出。

正确性

- 正确性:

- 技术原理、功能、支持平台、参数类型、异常报错等描述和软件实现不一致。

- 原理图、架构图等存在错误。

- 命令、命令参数等错误。

- 代码片段错误。

- 命令无法完成对应功能。

- 界面错误,无法指导操作。

- 代码样例运行报错、运行结果不符。

风险提示

- 风险提示:

- 对重要数据或系统存在风险的操作,缺少安全提示。

内容合规

- 内容合规:

- 违反法律法规,涉及政治、领土主权等敏感词。

- 内容侵权。

请选择问题类型

问题描述

点击输入详细问题描述,以帮助我们快速定位问题。

mindspore.nn.WarmUpLR

查看源文件
class mindspore.nn.WarmUpLR(learning_rate, warmup_steps)[源代码]

预热学习率。

对于当前step,计算学习率的公式为:

warmup_learning_rate=learning_ratetmp_step/warmup_steps

其中,

tmp_step=min(current_step,warmup_steps)
参数:
  • learning_rate (float) - 学习率的初始值, learning_rate 的值必须大于0。

  • warmup_steps (int) - 学习率warmup的step数, warmup_steps 的值必须大于或等于1。

输入:
  • global_step (Tensor) - 当前step数,即current_step。shape为 ()

输出:

标量Tensor。当前step的学习率值,shape为 ()

异常:
  • TypeError - learning_rate 不是float。

  • TypeError - warmup_steps 不是int。

  • ValueError - warmup_steps 小于1。

  • ValueError - learning_rate 小于或等于0。

支持平台:

Ascend GPU CPU

样例:

>>> import mindspore
>>> from mindspore import Tensor, nn
>>>
>>> learning_rate = 0.1
>>> warmup_steps = 2
>>> global_step = Tensor(2, mindspore.int32)
>>> warmup_lr = nn.WarmUpLR(learning_rate, warmup_steps)
>>> lr = warmup_lr(global_step)
>>> net = nn.Dense(2, 3)
>>> optim = nn.SGD(net.trainable_params(), learning_rate=lr)