文档反馈

问题文档片段

问题文档片段包含公式时,显示为空格。

提交类型
issue

有点复杂...

找人问问吧。

PR

小问题,全程线上修改...

一键搞定!

请选择提交类型

问题类型
规范和低错类

- 规范和低错类:

- 错别字或拼写错误,标点符号使用错误、公式错误或显示异常。

- 链接错误、空单元格、格式错误。

- 英文中包含中文字符。

- 界面和描述不一致,但不影响操作。

- 表述不通顺,但不影响理解。

- 版本号不匹配:如软件包名称、界面版本号。

易用性

- 易用性:

- 关键步骤错误或缺失,无法指导用户完成任务。

- 缺少主要功能描述、关键词解释、必要前提条件、注意事项等。

- 描述内容存在歧义指代不明、上下文矛盾。

- 逻辑不清晰,该分类、分项、分步骤的没有给出。

正确性

- 正确性:

- 技术原理、功能、支持平台、参数类型、异常报错等描述和软件实现不一致。

- 原理图、架构图等存在错误。

- 命令、命令参数等错误。

- 代码片段错误。

- 命令无法完成对应功能。

- 界面错误,无法指导操作。

- 代码样例运行报错、运行结果不符。

风险提示

- 风险提示:

- 对重要数据或系统存在风险的操作,缺少安全提示。

内容合规

- 内容合规:

- 违反法律法规,涉及政治、领土主权等敏感词。

- 内容侵权。

请选择问题类型

问题描述

点击输入详细问题描述,以帮助我们快速定位问题。

mindspore.experimental.optim.lr_scheduler.PolynomialLR

查看源文件
class mindspore.experimental.optim.lr_scheduler.PolynomialLR(optimizer, total_iters=5, power=1.0, last_epoch=- 1)[源代码]

每个epoch通过多项式拟合来调整学习率。当epoch大于等于 total_iters 时,学习率设置为 0 。注意,这种衰减可能与外部对于学习率的改变同时发生。

学习率计算的多项式公式如下:

factor=(1.0last_epochtotal_iters1.0last_epoch1.0total_iters)powerlr=lr×factor

警告

这是一个实验性的动态学习率接口,需要和 mindspore.experimental.optim 下的接口配合使用。

参数:
  • optimizer (mindspore.experimental.optim.Optimizer) - 优化器实例。

  • total_iters (int,可选) - 通过多项式拟合调整学习率的迭代次数。默认值: 5

  • power (float,可选) - 多项式的幂。默认值: 1.0

  • last_epoch (int,可选) - 最后一个epoch的索引。默认值: -1

支持平台:

Ascend GPU CPU

样例:

>>> from mindspore import nn
>>> from mindspore.experimental import optim
>>> class Net(nn.Cell):
...     def __init__(self):
...         super(Net, self).__init__()
...         self.fc = nn.Dense(16 * 5 * 5, 120)
...     def construct(self, x):
...         return self.fc(x)
>>> net = Net()
>>> optimizer = optim.Adam(net.trainable_params(), 0.01)
>>> scheduler = optim.lr_scheduler.PolynomialLR(optimizer)
>>> for i in range(6):
...     scheduler.step()
...     current_lr = scheduler.get_last_lr()
...     print(current_lr)
[Tensor(shape=[], dtype=Float32, value= 0.008)]
[Tensor(shape=[], dtype=Float32, value= 0.006)]
[Tensor(shape=[], dtype=Float32, value= 0.004)]
[Tensor(shape=[], dtype=Float32, value= 0.002)]
[Tensor(shape=[], dtype=Float32, value= 0)]
[Tensor(shape=[], dtype=Float32, value= 0)]