文档反馈

问题文档片段

问题文档片段包含公式时,显示为空格。

提交类型
issue

有点复杂...

找人问问吧。

PR

小问题,全程线上修改...

一键搞定!

请选择提交类型

问题类型
规范和低错类

- 规范和低错类:

- 错别字或拼写错误,标点符号使用错误、公式错误或显示异常。

- 链接错误、空单元格、格式错误。

- 英文中包含中文字符。

- 界面和描述不一致,但不影响操作。

- 表述不通顺,但不影响理解。

- 版本号不匹配:如软件包名称、界面版本号。

易用性

- 易用性:

- 关键步骤错误或缺失,无法指导用户完成任务。

- 缺少主要功能描述、关键词解释、必要前提条件、注意事项等。

- 描述内容存在歧义指代不明、上下文矛盾。

- 逻辑不清晰,该分类、分项、分步骤的没有给出。

正确性

- 正确性:

- 技术原理、功能、支持平台、参数类型、异常报错等描述和软件实现不一致。

- 原理图、架构图等存在错误。

- 命令、命令参数等错误。

- 代码片段错误。

- 命令无法完成对应功能。

- 界面错误,无法指导操作。

- 代码样例运行报错、运行结果不符。

风险提示

- 风险提示:

- 对重要数据或系统存在风险的操作,缺少安全提示。

内容合规

- 内容合规:

- 违反法律法规,涉及政治、领土主权等敏感词。

- 内容侵权。

请选择问题类型

问题描述

点击输入详细问题描述,以帮助我们快速定位问题。

mindspore.experimental.optim.lr_scheduler.CosineAnnealingWarmRestarts

查看源文件
class mindspore.experimental.optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, T_0, T_mult=1, eta_min=0, last_epoch=- 1)[源代码]

使用余弦退火热重启,改变优化器参数组的学习率。

ηt=ηmin+12(ηmaxηmin)(1+cos(TcurTiπ))

其中, ηmax 为初始学习率,ηmin 为学习率变化的最小值,ηt 为当前学习率,T0 为初始周期,Ti 为当前周期,即SGDR两次热重启之间的迭代数,Tcur 为当前周期内的迭代数。

Tcur=Ti 时,ηt=ηmin;热重启后 Tcur=0 时, ηt=ηmax

详情请查看 SGDR: Stochastic Gradient Descent with Warm Restarts

警告

这是一个实验性的动态学习率接口,需要和 mindspore.experimental.optim 下的接口配合使用。

参数:
  • optimizer (mindspore.experimental.optim.Optimizer) - 优化器实例。

  • T_0 (int) - 余弦函数的初始周期数。

  • T_mult (int, 可选) - 迭代中对 Ti 进行增长的乘法系数。默认值: 1

  • eta_min (Union(float, int), 可选) - 学习率的最小值。默认值: 0

  • last_epoch (int,可选) - 当前学习率调整策略的 step() 方法的执行次数。默认值: -1

异常:
  • ValueError - T_0 小于等于0或不是int类型。

  • ValueError - T_mult 小于等于1或不是int类型。

  • ValueError - eta_min 不是int或float类型。

支持平台:

Ascend GPU CPU

样例:

>>> from mindspore.experimental import optim
>>> from mindspore import nn
>>> net = nn.Dense(3, 2)
>>> optimizer = optim.SGD(net.trainable_params(), lr=0.1, momentum=0.9)
>>> scheduler = optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, 2)
>>> iters = 3
>>> for epoch in range(2):
...     for i in range(iters):
...         scheduler.step(epoch + i / iters)
...         current_lr = scheduler.get_last_lr()
...         print(current_lr)
[Tensor(shape=[], dtype=Float32, value= 0.1)]
[Tensor(shape=[], dtype=Float32, value= 0.0933013)]
[Tensor(shape=[], dtype=Float32, value= 0.075)]
[Tensor(shape=[], dtype=Float32, value= 0.05)]
[Tensor(shape=[], dtype=Float32, value= 0.025)]
[Tensor(shape=[], dtype=Float32, value= 0.00669873)]
step(epoch=None)[源代码]

按照定义的计算逻辑计算并修改学习率。

参数:
  • epoch (int,可选) - epoch数。默认值: None