mindspore.train.RootMeanSquareDistance
- class mindspore.train.RootMeanSquareDistance(symmetric=False, distance_metric='euclidean')[source]
Computes the Root Mean Square Surface Distance from y_pred to y under the default setting.
Given two sets A and B, S(A) denotes the set of surface voxels of A, the shortest distance of an arbitrary voxel v to S(A) is defined as:
The Root Mean Square Surface Distance from set(B) to set(A) is:
Where the ||*|| denotes a distance measure. |*| denotes the number of elements.
The Root Mean Square Surface Distance from set(B) to set(A) and from set(A) to set(B) is:
- Parameters
distance_metric (str) – Three measurement methods are supported:
"euclidean"
(Euclidean Distance) ,"chessboard"
(Chessboard Distance, Chebyshev Distance) or"taxicab"
(Taxicab Distance, Manhattan Distance). Default:"euclidean"
.symmetric (bool) – Whether to calculate the symmetric average root mean square distance between y_pred and y. If False, only calculates
surface distance, otherwise, the mean of distance from y_pred to y and from y to y_pred, i.e. will be returned. Default:False
.
- Supported Platforms:
Ascend
GPU
CPU
Examples
>>> import numpy as np >>> from mindspore import Tensor >>> from mindspore.train import RootMeanSquareDistance >>> >>> x = Tensor(np.array([[3, 0, 1], [1, 3, 0], [1, 0, 2]])) >>> y = Tensor(np.array([[0, 2, 1], [1, 2, 1], [0, 0, 1]])) >>> metric = RootMeanSquareDistance(symmetric=False, distance_metric="euclidean") >>> metric.clear() >>> metric.update(x, y, 0) >>> root_mean_square_distance = metric.eval() >>> print(root_mean_square_distance) 1.0000000000000002
- eval()[source]
Calculate Root Mean Square Distance.
- Returns
numpy.float64, root mean square surface distance.
- Raises
RuntimeError – If the update method is not called first, an error will be reported.
- update(*inputs)[source]
Updates the internal evaluation result 'y_pred', 'y' and 'label_idx'.
- Parameters
inputs – Input 'y_pred', 'y' and 'label_idx'. 'y_pred' and 'y' are Tensor, list or numpy.ndarray. 'y_pred' is the predicted binary image. 'y' is the actual binary image. 'label_idx', the data type of label_idx is int.
- Raises
ValueError – If the number of the inputs is not 3.
TypeError – If the data type of label_idx is not int or float.
ValueError – If the value of label_idx is not in y_pred or y.
ValueError – If y_pred and y have different shapes.