mindspore.mint.optim.Adam
- class mindspore.mint.optim.Adam(params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0.0, amsgrad=False, *, maximize=False)[source]
Implements Adaptive Moment Estimation (Adam) algorithm.
The updating formulas are as follows:
Warning
This is an experimental API that is subject to change or deletion.
- Parameters
params (Union[list(Parameter), list(dict)]) – list of parameters to optimize or dicts defining parameter groups
lr (Union[int, float, Tensor], optional) – learning rate. Default:
1e-3
.betas (Tuple[float, float], optional) – The exponential decay rate for the moment estimations. Should be in range (0.0, 1.0). Default:
(0.9, 0.999)
.eps (float, optional) – term added to the denominator to improve numerical stability. Should be greater than 0. Default:
1e-8
.weight_decay (float, optional) – weight decay (L2 penalty). Default:
0.
.amsgrad (bool, optional) – whether to use the AMSGrad algorithm. Default:
False
.
- Keyword Arguments
maximize (bool, optional) – maximize the params based on the objective, instead of minimizing. Default:
False
.
- Inputs:
gradients (tuple[Tensor]) - The gradients of params.
- Raises
ValueError – If the lr is not int, float or Tensor.
ValueError – If the lr is less than 0.
ValueError – If the eps is less than 0.0.
ValueError – If the betas is not in the range of [0, 1).
ValueError – If the weight_decay is less than 0.
- Supported Platforms:
Ascend
Examples
>>> import mindspore >>> from mindspore import mint >>> from mindspore import mint >>> # Define the network structure of LeNet5. Refer to >>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py >>> net = LeNet5() >>> loss_fn = nn.SoftmaxCrossEntropyWithLogits(sparse=True) >>> optimizer = mint.optim.Adam(net.trainable_params(), lr=0.1) >>> def forward_fn(data, label): ... logits = net(data) ... loss = loss_fn(logits, label) ... return loss, logits >>> grad_fn = mindspore.value_and_grad(forward_fn, None, optimizer.parameters, has_aux=True) >>> def train_step(data, label): ... (loss, _), grads = grad_fn(data, label) ... optimizer(grads) ... return loss