mindspore.mint.nn.ZeroPad1d
- class mindspore.mint.nn.ZeroPad1d(padding)[source]
Pad the last dimension of input tensor with 0 using padding.
For more information, please refer to
mindspore.mint.nn.functional.pad()
.Warning
This is an experimental API that is subject to change or deletion.
- Inputs:
input (Tensor) - shape is \((N, *)\), where \(*\) means, any number of additional dimensions.
- Outputs:
Tensor, the tensor after padding.
- Raises
TypeError – If padding is not an integer of a list or tuple of 2 integers.
TypeError – If input is not Tensor.
ValueError – If padding contains negative value.
ValueError – If padding is a tuple or list, and the length does not match the tensor dimension.
- Supported Platforms:
Ascend
Examples
>>> import numpy as np >>> import mindspore as ms >>> x = np.ones(shape=(1, 2, 3, 4)).astype(np.float32) >>> x = ms.Tensor(x) >>> # padding is tuple >>> padding = (0, 1) >>> pad1d = ms.mint.nn.ZeroPad1d(padding) >>> out = pad1d(x) >>> print(out) [[[[1. 1. 1. 1. 0.] [1. 1. 1. 1. 0.] [1. 1. 1. 1. 0.]] [[1. 1. 1. 1. 0.] [1. 1. 1. 1. 0.] [1. 1. 1. 1. 0.]]]] >>> print(out.shape) (1, 2, 3, 5) >>> # padding is int >>> padding = 1 >>> pad1d = ms.mint.nn.ZeroPad1d(padding) >>> out = pad1d(x) >>> print(out) [[[[0. 1. 1. 1. 1. 0.] [0. 1. 1. 1. 1. 0.] [0. 1. 1. 1. 1. 0.]] [[0. 1. 1. 1. 1. 0.] [0. 1. 1. 1. 1. 0.] [0. 1. 1. 1. 1. 0.]]]] >>> print(out.shape) (1, 2, 3, 6)