mindspore.Tensor.random_

View Source On Gitee
Tensor.random_(from_=0, to=None, *, generator=None)[source]

Fill the tensor with numbers sampled from a discrete uniform distribution over an interval \([from\_, to-1]\).

Warning

This is an experimental API that is subject to change or deletion.

Parameters
  • from_ (Union[number.Number, Tensor], optional) – the lower bound of the generated random number. It can be a scalar value or a tensor of any dimension with only a single element. Default: 0.

  • to (Union[number.Number, Tensor], optional) – the upper bound of the generated random number. By default it's the upper limit of the input data type. It can be a scalar value or a tensor of any dimension with only a single element. Default: None.

Keyword Arguments

generator (mindspore.Generator, optional) – a pseudorandom number generator. Default: None, uses the default pseudorandom number generator.

Returns

The input tensor.

Raises
Supported Platforms:

Ascend

Examples

>>> from mindspore import Tensor
>>> a = Tensor([[2, 3, 4], [1, 2, 3]])
>>> from_ = 0
>>> to = 5
>>> print(a.random_(low, high).shape)
(2, 3)