mindspore.Tensor.isclose
- Tensor.isclose(other, rtol=1e-05, atol=1e-08, equal_nan=False) Tensor
Returns a tensor of Boolean values indicating whether each element of input is "close" to the corresponding element of other. Closeness is defined as:
\[|input-other| <= atol + rtol * |other|\]- Parameters
- Returns
Tensor, with the same shape as input and other after broadcasting, its dtype is bool.
- Supported Platforms:
Ascend
GPU
CPU
Examples
>>> import mindspore >>> import numpy as np >>> from mindspore import Tensor >>> input = Tensor(np.array([1.3, 2.1, 3.2, 4.1, 5.1]), mindspore.float16) >>> other = Tensor(np.array([1.3, 3.3, 2.3, 3.1, 5.1]), mindspore.float16) >>> output = Tensor.isclose(input, other) >>> print(output) [ True False False False True]
- Tensor.isclose(x2, rtol=1e-05, atol=1e-08, equal_nan=False) Tensor
Returns a new Tensor with boolean elements representing if each element of input is "close" to the corresponding element of x2. Closeness is defined as:
\[|input-x2| <= atol + rtol * |x2|\]- Parameters
x2 (Tensor) – Second tensor to compare. Dtype must be same as input.
rtol (Union[float, int, bool], optional) – Relative tolerance. Default:
1e-05
.atol (Union[float, int, bool], optional) – Absolute tolerance. Default:
1e-08
.equal_nan (bool, optional) – If
True
, then two NaNs will be considered equal. Default:False
.
- Returns
A bool Tensor, with the shape as broadcasted result of the input input and x2.
- Raises
TypeError – x2 is not Tensor.
TypeError – input or x2 dtype is not support. Support dtype: float16, float32, float64, int8, int16, int32, int64 and uint8. On Ascend, more dtypes are support: bool and bfloat16.
TypeError – atol or rtol is not float, int or bool.
TypeError – equal_nan is not bool.
TypeError – input and x2 have different dtypes.
ValueError – input and x2 cannot broadcast.
- Supported Platforms:
Ascend
GPU
CPU
Examples
>>> import mindspore >>> import numpy as np >>> from mindspore import Tensor >>> input = Tensor(np.array([1.3, 2.1, 3.2, 4.1, 5.1]), mindspore.float16) >>> x2 = Tensor(np.array([1.3, 3.3, 2.3, 3.1, 5.1]), mindspore.float16) >>> output = Tensor.isclose(input, x2) >>> print(output) [ True False False False True]