mindspore.nn.Conv2d
- class mindspore.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, pad_mode='same', padding=0, dilation=1, group=1, has_bias=False, weight_init='normal', bias_init='zeros', data_format='NCHW')[source]
2D convolution layer.
Applies a 2D convolution over an input tensor which is typically of shape \((N, C_{in}, H_{in}, W_{in})\), where \(N\) is batch size, \(C_{in}\) is channel number, and \(H_{in}, W_{in}\) are height and width. For each batch of shape \((C_{in}, H_{in}, W_{in})\), the formula is defined as:
\[out_j = \sum_{i=0}^{C_{in} - 1} ccor(W_{ij}, X_i) + b_j,\]where \(ccor\) is the cross-correlation operator, \(C_{in}\) is the input channel number, \(j\) ranges from \(0\) to \(C_{out} - 1\), \(W_{ij}\) corresponds to the \(i\)-th channel of the \(j\)-th filter and \(out_{j}\) corresponds to the \(j\)-th channel of the output. \(W_{ij}\) is a slice of kernel and it has shape \((\text{kernel_size[0]}, \text{kernel_size[1]})\), where \(\text{kernel_size[0]}\) and \(\text{kernel_size[1]}\) are the height and width of the convolution kernel. The full kernel has shape \((C_{out}, C_{in} // \text{group}, \text{kernel_size[0]}, \text{kernel_size[1]})\), where group is the group number to split the input x in the channel dimension.
If the ‘pad_mode’ is set to be “valid”, the output height and width will be \(\left \lfloor{1 + \frac{H_{in} + \text{padding[0]} + \text{padding[1]} - \text{kernel_size[0]} - (\text{kernel_size[0]} - 1) \times (\text{dilation[0]} - 1) }{\text{stride[0]}}} \right \rfloor\) and \(\left \lfloor{1 + \frac{W_{in} + \text{padding[2]} + \text{padding[3]} - \text{kernel_size[1]} - (\text{kernel_size[1]} - 1) \times (\text{dilation[1]} - 1) }{\text{stride[1]}}} \right \rfloor\) respectively.
The first introduction can be found in paper Gradient Based Learning Applied to Document Recognition.
- Parameters
in_channels (int) – The number of input channel \(C_{in}\).
out_channels (int) – The number of output channel \(C_{out}\).
kernel_size (Union[int, tuple[int]]) – The data type is int or a tuple of 2 integers. Specifies the height and width of the 2D convolution window. Single int means the value is for both the height and the width of the kernel. A tuple of 2 ints means the first value is for the height and the other is for the width of the kernel.
stride (Union[int, tuple[int]]) – The distance of kernel moving, an int number that represents the height and width of movement are both strides, or a tuple of two int numbers that represent height and width of movement respectively. Default: 1.
pad_mode (str) –
Specifies padding mode. The optional values are “same”, “valid”, “pad”. Default: “same”.
same: Adopts the way of completion. The height and width of the output will be the same as the input x. The total number of padding will be calculated in horizontal and vertical directions and evenly distributed to top and bottom, left and right if possible. Otherwise, the last extra padding will be done from the bottom and the right side. If this mode is set, padding must be 0.
valid: Adopts the way of discarding. The possible largest height and width of output will be returned without padding. Extra pixels will be discarded. If this mode is set, padding must be 0.
pad: Implicit paddings on both sides of the input x. The number of padding will be padded to the input Tensor borders. padding must be greater than or equal to 0.
padding (Union[int, tuple[int]]) – Implicit paddings on both sides of the input x. If padding is one integer, the paddings of top, bottom, left and right are the same, equal to padding. If padding is a tuple with four integers, the paddings of top, bottom, left and right will be equal to padding[0], padding[1], padding[2], and padding[3] accordingly. Default: 0.
dilation (Union[int, tuple[int]]) – The data type is int or a tuple of 2 integers. Specifies the dilation rate to use for dilated convolution. If set to be \(k > 1\), there will be \(k - 1\) pixels skipped for each sampling location. Its value must be greater or equal to 1 and bounded by the height and width of the input x. Default: 1.
group (int) – Splits filter into groups, in_ channels and out_channels must be divisible by the number of groups. If the group is equal to in_channels and out_channels, this 2D convolution layer also can be called 2D depthwise convolution layer. Default: 1.
has_bias (bool) – Specifies whether the layer uses a bias vector. Default: False.
weight_init (Union[Tensor, str, Initializer, numbers.Number]) – Initializer for the convolution kernel. It can be a Tensor, a string, an Initializer or a number. When a string is specified, values from ‘TruncatedNormal’, ‘Normal’, ‘Uniform’, ‘HeUniform’ and ‘XavierUniform’ distributions as well as constant ‘One’ and ‘Zero’ distributions are possible. Alias ‘xavier_uniform’, ‘he_uniform’, ‘ones’ and ‘zeros’ are acceptable. Uppercase and lowercase are both acceptable. Refer to the values of Initializer for more details. Default: ‘normal’.
bias_init (Union[Tensor, str, Initializer, numbers.Number]) – Initializer for the bias vector. Possible Initializer and string are the same as ‘weight_init’. Refer to the values of Initializer for more details. Default: ‘zeros’.
data_format (str) – The optional value for data format, is ‘NHWC’ or ‘NCHW’. Default: ‘NCHW’.
- Inputs:
x (Tensor) - Tensor of shape \((N, C_{in}, H_{in}, W_{in})\) or \((N, H_{in}, W_{in}, C_{in})\).
- Outputs:
Tensor of shape \((N, C_{out}, H_{out}, W_{out})\) or \((N, H_{out}, W_{out}, C_{out})\).
- Raises
TypeError – If in_channels, out_channels or group is not an int.
TypeError – If kernel_size, stride, padding or dilation is neither an int not a tuple.
ValueError – If in_channels, out_channels, kernel_size, stride or dilation is less than 1.
ValueError – If padding is less than 0.
ValueError – If pad_mode is not one of ‘same’, ‘valid’, ‘pad’.
ValueError – If padding is a tuple whose length is not equal to 4.
ValueError – If pad_mode is not equal to ‘pad’ and padding is not equal to (0, 0, 0, 0).
ValueError – If data_format is neither ‘NCHW’ not ‘NHWC’.
- Supported Platforms:
Ascend
GPU
CPU
Examples
>>> net = nn.Conv2d(120, 240, 4, has_bias=False, weight_init='normal') >>> x = Tensor(np.ones([1, 120, 1024, 640]), mindspore.float32) >>> output = net(x).shape >>> print(output) (1, 240, 1024, 640)