Document feedback

Question document fragment

When a question document fragment contains a formula, it is displayed as a space.

Submission type
issue

It's a little complicated...

I'd like to ask someone.

Please select the submission type

Problem type
Specifications and Common Mistakes

- Specifications and Common Mistakes:

- Misspellings or punctuation mistakes,incorrect formulas, abnormal display.

- Incorrect links, empty cells, or wrong formats.

- Chinese characters in English context.

- Minor inconsistencies between the UI and descriptions.

- Low writing fluency that does not affect understanding.

- Incorrect version numbers, including software package names and version numbers on the UI.

Usability

- Usability:

- Incorrect or missing key steps.

- Missing main function descriptions, keyword explanation, necessary prerequisites, or precautions.

- Ambiguous descriptions, unclear reference, or contradictory context.

- Unclear logic, such as missing classifications, items, and steps.

Correctness

- Correctness:

- Technical principles, function descriptions, supported platforms, parameter types, or exceptions inconsistent with that of software implementation.

- Incorrect schematic or architecture diagrams.

- Incorrect commands or command parameters.

- Incorrect code.

- Commands inconsistent with the functions.

- Wrong screenshots.

- Sample code running error, or running results inconsistent with the expectation.

Risk Warnings

- Risk Warnings:

- Lack of risk warnings for operations that may damage the system or important data.

Content Compliance

- Content Compliance:

- Contents that may violate applicable laws and regulations or geo-cultural context-sensitive words and expressions.

- Copyright infringement.

Please select the type of question

Problem description

Describe the bug so that we can quickly locate the problem.

mindspore.nn.Conv1d

class mindspore.nn.Conv1d(in_channels, out_channels, kernel_size, stride=1, pad_mode='same', padding=0, dilation=1, group=1, has_bias=False, weight_init='normal', bias_init='zeros')[source]

1D convolution layer.

Applies a 1D convolution over an input tensor which is typically of shape (N,Cin,Win), where N is batch size and Cin is channel number. For each batch of shape (Cin,Win), the formula is defined as:

outj=i=0Cin1ccor(Wij,Xi)+bj,

where ccor is the cross correlation operator, Cin is the input channel number, j ranges from 0 to Cout1, Wij corresponds to the i-th channel of the j-th filter and outj corresponds to the j-th channel of the output. Wij is a slice of kernel and it has shape (ks_w), where ks_w is the width of the convolution kernel. The full kernel has shape (Cout,Cin//group,ks_w), where group is the group number to split the input x in the channel dimension.

If the ‘pad_mode’ is set to be “valid”, the output width will be 1+Win+2×paddingks_w(ks_w1)×(dilation1)stride respectively.

The first introduction of convolution layer can be found in paper Gradient Based Learning Applied to Document Recognition.

Parameters
  • in_channels (int) – The number of input channel Cin.

  • out_channels (int) – The number of output channel Cout.

  • kernel_size (int) – The data type is int. Specifies the width of the 1D convolution window.

  • stride (int) – The distance of kernel moving, an int number that represents the width of movement. Default: 1.

  • pad_mode (str) –

    Specifies padding mode. The optional values are “same”, “valid”, “pad”. Default: “same”.

    • same: Adopts the way of completion. The output width will be the same as the input x. The total number of padding will be calculated in the horizontal direction and evenly distributed to left and right if possible. Otherwise, the last extra padding will be done from the bottom and the right side. If this mode is set, padding must be 0.

    • valid: Adopts the way of discarding. The possible largest width of the output will be returned without padding. Extra pixels will be discarded. If this mode is set, padding must be 0.

    • pad: Implicit paddings on both sides of the input x. The number of padding will be padded to the input Tensor borders. padding must be greater than or equal to 0.

  • padding (int) – Implicit paddings on both sides of the input x. Default: 0.

  • dilation (int) – The data type is int. Specifies the dilation rate to use for dilated convolution. If set to be k>1, there will be k1 pixels skipped for each sampling location. Its value must be greater or equal to 1 and bounded by the height and width of the input x. Default: 1.

  • group (int) – Splits filter into groups, in_ channels and out_channels must be divisible by the number of groups. Default: 1.

  • has_bias (bool) – Specifies whether the layer uses a bias vector. Default: False.

  • weight_init (Union[Tensor, str, Initializer, numbers.Number]) – An initializer for the convolution kernel. It can be a Tensor, a string, an Initializer or a number. When a string is specified, values from ‘TruncatedNormal’, ‘Normal’, ‘Uniform’, ‘HeUniform’ and ‘XavierUniform’ distributions as well as constant ‘One’ and ‘Zero’ distributions are possible. Alias ‘xavier_uniform’, ‘he_uniform’, ‘ones’ and ‘zeros’ are acceptable. Uppercase and lowercase are both acceptable. Refer to the values of Initializer for more details. Default: ‘normal’.

  • bias_init (Union[Tensor, str, Initializer, numbers.Number]) – Initializer for the bias vector. Possible Initializer and string are the same as ‘weight_init’. Refer to the values of Initializer for more details. Default: ‘zeros’.

Inputs:
  • x (Tensor) - Tensor of shape (N,Cin,Win).

Outputs:

Tensor of shape (N,Cout,Wout).

Raises
  • TypeError – If in_channels, out_channels, kernel_size, stride, padding or dilation is not an int.

  • ValueError – If in_channels, out_channels, kernel_size, stride or dilation is less than 1.

  • ValueError – If padding is less than 0.

  • ValueError – If pad_mode is not one of ‘same’, ‘valid’, ‘pad’.

Supported Platforms:

Ascend GPU CPU

Examples

>>> net = nn.Conv1d(120, 240, 4, has_bias=False, weight_init='normal')
>>> x = Tensor(np.ones([1, 120, 640]), mindspore.float32)
>>> output = net(x).shape
>>> print(output)
(1, 240, 640)