mindquantum
mindquantum.circuit
Circuit.
Quantum circuit module.
- class mindquantum.circuit.Circuit(gates=None)[source]
The quantum circuit module.
A quantum circuit contains one or more quantum gates, and can be evaluated in a quantum simulator. You can build a quantum circuit very easy by add a quantum gate or another circuit.
- Parameters
gates (BasicGate, list[BasicGate]) – You can initialize the quantum circuit by a single quantum gate or a list of gates.
Examples
>>> circuit1 = Circuit() >>> circuit1 += RX('a').on(0) >>> circuit1 *= 2 >>> print(circuit1) RX(a|0) RX(a|0) >>> circuit2 = Circuit([X.on(0,1)]) >>> circuit3= circuit1 + circuit2 >>> assert len(circuit3) == 3 >>> circuit3.summary() =======Circuit Summary======= |Total number of gates : 3.| |Parameter gates : 2.| |with 1 parameters are : a.| |Number qubit of circuit: 2 | =============================
- property hermitian
Get the hermitian of this quantum circuit.
Examples
>>> circ = Circuit(RX({'a': 0.2}).on(0)) >>> herm_circ = circ.hermitian >>> herm_circ[0].coeff {'a': -0.2}
- parameter_resolver()[source]
Get the parameter resolver of the whole circuit.
Note
This parameter resolver only tells you what are the parameters of this quantum circuit, and which part of parameters need grad, since the same parameter can be in different gate, and the coefficient can be different. The detail parameter resolver that shows the coefficient is in each gate of the circuit.
- Returns
ParameterResolver, the parameter resolver of the whole circuit.
- summary(show=True)[source]
Print the information about current circuit, including block number, gate number, non-parameterized gate number, parameterized gate number and the total parameters.
Examples
>>> circuit = Circuit([RX('a').on(1), H.on(1), RX('b').on(0)]) >>> circuit.summary() ========Circuit Summary======== |Total number of gates:3. | |Blocks :1. | |Non parameter gates :1. | |Parameter gates :2. | |with 2 parameters are: b, a. | ===============================
- class mindquantum.circuit.SwapParts(a: collections.abc.Iterable, b: collections.abc.Iterable, maps_ctrl=None)[source]
Swap two different part of quantum circuit, with or without control qubits.
- Parameters
a (Iterable) – The first part you need to swap.
b (Iterable) – The second part you need to swap.
maps_ctrl (int, Iterable) – Control the swap by a single qubit or by different qubits or just no control qubit. Default: None.
Examples
>>> SwapParts([1, 2], [3, 4], 0) SWAP(1 3 <-: 0) SWAP(2 4 <-: 0)
- class mindquantum.circuit.UN(gate: mindquantum.gate.basic.BasicGate, maps_obj, maps_ctrl=None)[source]
Map a quantum gate to different objective qubits and control qubits.
- Parameters
- Returns
Circuit, Return a quantum circuit.
Examples
>>> circuit1 = UN(X, maps_obj = [0, 1], maps_ctrl = [2, 3]) >>> print(circuit1) X(0 <-: 2) X(1 <-: 3) >>> circuit2 = UN(SWAP, maps_obj =[[0, 1], [2, 3]]) >>> print(circuit2) SWAP(0 1) SWAP(2 3)
- mindquantum.circuit.decompose_single_term_time_evolution(term, para)[source]
Decompose a time evolution gate into basic quantum gates.
This function only work for the hamiltonian with only single pauli word. For example, exp(-i * t * ham), ham can only be a single pauli word, such as ham = X0 x Y1 x Z2, and at this time, term will be ((0, ‘X’), (1, ‘Y’), (2, ‘Z’)). When the evolution time is expressd as t = a*x + b*y, para would be {‘x’:a, ‘y’:b}.
- Parameters
- Returns
Circuit, a quantum circuit.
Example
>>> from projectq.ops import QubitOperator >>> ham = QubitOperator('X0 Y1') >>> circuit = decompose_single_term_time_evolution(ham, {'a':1}) >>> print(circuit) H(0) RX(1.571,1) X(1 <-: 0) RZ(a|1) X(1 <-: 0) RX(10.996,1) H(0)
- mindquantum.circuit.generate_uccsd(filename, th=0)[source]
Generate a uccsd quantum circuit based on a molecular data generated by HiQfermion or openfermion.
- Parameters
- Returns
uccsd_circuit (Circuit), the ansatz circuit generated by uccsd method.
initial_amplitudes (numpy.ndarray), the initial parameter values of uccsd circuit.
parameters_name (list[str]), the name of initial parameters.
qubit_hamiltonian (QubitOperator), the hamiltonian of the molecule.
n_qubits (int), the number of qubits in simulation.
n_electrons, the number of electrons of the molecule.
- mindquantum.circuit.pauli_word_to_circuits(qubitops)[source]
Convert a single pauli word qubit operator to a quantum circuit.
- Parameters
qubitops (QubitOperator, Hamiltonian) – The single pauli word qubit operator.
- Returns
Circuit, a quantum circuit.
Examples
>>> from openfermion.ops import QubitOperator >>> qubitops = QubitOperator('X0 Y1') >>> pauli_word_to_circuits(qubitops) X(0) Y(1)
mindquantum.engine
Circuit engine module.
- class mindquantum.engine.BasicQubit(qubit_id, circuit=None)[source]
A quantum qubit.
- Parameters
- property circuit
Get the quantum circuit that this qubit belongs to.
- class mindquantum.engine.CircuitEngine[source]
A simple circuit engine that allows you to generate quantum circuit as projectq style.
Note
For more usage, please refers to
CircuitEngine.generator
- allocate_qureg(n)[source]
Allocate a quantum register.
- Parameters
n (int) – Number of quantum qubits.
- property circuit
Get the quantum circuit that construct by this engin.
- static generator(n_qubits, *args, **kwds)[source]
Quantum circuit register.
- Parameters
n_qubits (int) – qubit number of quantum circuit.
Examples
>>> import mindquantum.gate as G >>> from mindquantum.engine import circuit_generator >>> @circuit_generator(2,prefix='p') >>> def ansatz(qubits, prefix): >>> G.X | (qubits[0], qubits[1]) >>> G.RX(prefix+'_0') | qubits[1] >>> print(ansatz) X(1 <-: 0) RX(p_0|1) >>> print(type(ansatz)) <class 'mindquantum.circuit.circuit.Circuit'>
mindquantum.gate
Gate.
Gate provides different quantum gate.
- class mindquantum.gate.BasicGate(name, isparameter=False)[source]
BasicGate is the base class of all gaets.
- on(obj_qubits, ctrl_qubits=None)[source]
Define which qubit the gate act on and the control qubit.
Note
In this framework, the qubit that the gate act on is specified first, even for control gate, e.g. CNOT, the second arg is control qubits.
- Parameters
- Returns
Gate, Return a new gate.
Examples
>>> x = X.on(1) >>> x.obj_qubits [1] >>> x.ctrl_qubits []
>>> x = X.on(2, [0, 1]) >>> x.ctrl_qubits [0, 1]
- class mindquantum.gate.CNOTGate[source]
Control-X gate.
More usage, please see
mindquantum.gate.XGate
.
- class mindquantum.gate.HGate[source]
Hadamard gate with matrix as:
\[\begin{split}H=\frac{1}{2}\begin{pmatrix}1&1\\1&-1\end{pmatrix}\end{split}\]More usage, please see
mindquantum.gate.XGate
.
- class mindquantum.gate.Hamiltonian(hamiltonian)[source]
A QubitOperator hamiltonian wrapper.
- Parameters
hamiltonian (QubitOperator) – The pauli word qubit operator.
Examples
>>> from projectq.ops import QubitOperator >>> ham = Hamiltonian(QubitOperator('Z0 Y1', 0.3)) >>> ham.mindspore_data() {'hams_pauli_coeff': [0.3], 'hams_pauli_word': [['Z', 'Y']], 'hams_pauli_qubit': [[0, 1]]}
- class mindquantum.gate.IGate[source]
Identity gate with matrix as:
\[\begin{split}H=\begin{pmatrix}1&0\\0&1\end{pmatrix}\end{split}\]More usage, please see
mindquantum.gate.XGate
.
- class mindquantum.gate.IntrinsicOneParaGate(name, coeff=None)[source]
The parameterized gate that can be intrinsicly described by only one parameter.
Note
A parameterized gate can also be a non parameterized gate, if the parameter you send in is only a number.
Examples
>>> rx1 = RX(1.2) >>> rx1 RX(1.2) >>> rx2 = RX({'a' : 0.5}) >>> rx2.coeff {'a': 0.5} >>> rx2.linearcombination(rx2.coeff,{'a' : 3}) 1.5
- diff_matrix(*paras_out, about_what=None)[source]
The differential form of this parameterized gate.
- Parameters
about_what (str, optional) – Specific the differential is about which parameter. Defaults to None.
- Returns
numpy.ndarray, Return the numpy array of the differential matrix.
Examples
>>> rx = RX('a') >>> np.round(rx.diff_matrix({'a' : 2}), 2) array([[-0.42+0.j , 0. -0.27j], [ 0. -0.27j, -0.42+0.j ]])
- hermitian()[source]
Get the mermitian gate of this parameterized gate.
Note
We only set the coeff to -coeff.
- matrix(*paras_out)[source]
The matrix of parameterized gate.
Note
If the parameterized gate convert to non parameterized gate, then you don’t need any parameters to get this matrix.
- Returns
np.array, Return the numpy array of the matrix.
Examples
>>> rx1 = RX(0) >>> rx1.matrix() array([[1.+0.j, 0.-0.j], [0.-0.j, 1.+0.j]]) >>> rx2 = RX({'a' : 1.2}) >>> np.round(rx2.matrix({'a': 2}), 2) array([[0.36+0.j , 0. -0.93j], [0. -0.93j, 0.36+0.j ]])
- class mindquantum.gate.NoneParameterGate(name)[source]
The basic class of gate that is not parametrized.
- class mindquantum.gate.ParameterGate(name, coeff=None)[source]
The basic class of gate that is parameterized.
- static linearcombination(coeff_in, paras_out)[source]
Combine the parameters and coefficient.
- Parameters
coeff_in (Union[dict, ParameterResolver]) – the coefficient of the parameterized gate.
paras_out (Union[dict, ParameterResolver]) – the parameter you send in.
- Returns
float, Multiply the values of the common keys of these two dicts.
- class mindquantum.gate.PhaseShift(coeff=None)[source]
Phase shift gate.
\[\begin{split}RX=\begin{pmatrix}1&0\\ 0&\exp(i\theta)\end{pmatrix}\end{split}\]More usage, please see
mindquantum.gate.RX
.
- class mindquantum.gate.Power(gate: mindquantum.gate.basic.NoneParameterGate, t=0.5)[source]
Power operator on a non parameterized gate.
- Parameters
gates (
mindquantum.gate.NoneParameterGate
) – The basic gate you need to apply power operator.
Examples
>>> rx1 = RX(0.5) >>> rx2 = RX(1) >>> assert np.all(np.isclose(Power(rx2,0.5).matrix(), rx1.matrix()))
- class mindquantum.gate.RX(coeff=None)[source]
Rotation gate around x-axis.
\[\begin{split}RX=\begin{pmatrix}\cos(\theta/2)&-i\sin(\theta/2)\\ -i\sin(\theta/2)&\cos(\theta/2)\end{pmatrix}\end{split}\]The rotation gate can be initialized in three different ways.
1. If you initialize it with a single number, then it will be a non parameterized gate with a certain rotation angle.
2. If you initialize it with a single str, then it will be a parameterized gate with only one parameter and the default coefficience is one.
3. If you initialize it with a dict, e.g. {‘a’:1,’b’:2}, this gate can have multiple parameters with certain coefficiences. In this case, it can be expressed as:
\[RX(a+2b)\]- Parameters
coeff (Union[int, float, str, dict]) – the parameters of parameterized gate, see above for detail explanation.
Examples
>>> rx1 = RX(0.5) >>> np.round(rx1.matrix(), 2) array([[0.97+0.j , 0. -0.25j], [0. -0.25j, 0.97+0.j ]]) >>> rx2 = RX('a') >>> np.round(rx2.matrix({'a':0.1}), 3) array([[0.999+0.j , 0. -0.05j], [0. -0.05j, 0.999+0.j ]]) >>> rx3 = RX({'a' : 0.2, 'b': 0.5}).on(0, 2) >>> print(rx3) RX(a b|0 <-: 2) >>> np.round(rx3.matrix({'a' : 1, 'b' : 2}), 2) array([[0.83+0.j , 0. -0.56j], [0. -0.56j, 0.83+0.j ]]) >>> np.round(rx3.diff_matrix({'a' : 1, 'b' : 2}, about_what = 'a'), 2) array([[-0.06+0.j , 0. -0.08j], [ 0. -0.08j, -0.06+0.j ]]) >>> rx3.coeff {'a': 0.2, 'b': 0.5}
- class mindquantum.gate.RY(coeff=None)[source]
Rotation gate around z-axis.
\[\begin{split}RY=\begin{pmatrix}\cos(\theta/2)&-\sin(\theta/2)\\ \sin(\theta/2)&\cos(\theta/2)\end{pmatrix}\end{split}\]More usage, please see
mindquantum.gate.RX
.
- class mindquantum.gate.RZ(coeff=None)[source]
Rotation gate around z-axis.
\[\begin{split}RZ=\begin{pmatrix}\exp(-i\theta/2)&0\\ 0&\exp(i\theta/2)\end{pmatrix}\end{split}\]More usage, please see
mindquantum.gate.RX
.
- class mindquantum.gate.UnivMathGate(name, mat)[source]
Universal math gate.
More usage, please see
mindquantum.gate.XGate
.Examples
>>> x_mat=np.array([[0,1],[1,0]]) >>> X_gate=UnivMathGate('X',x_mat) >>> x1=X_gate.on(0,1) >>> print(x1) X(0 <-: 1)
- class mindquantum.gate.XGate[source]
Pauli X gate with matrix as:
\[\begin{split}H=\begin{pmatrix}0&1\\1&0\end{pmatrix}\end{split}\]Note
For simplicity, you can do power operator on pauli gate (only works for pauli gate at this time). The rules is set below as:
\[X^\theta = RX(\theta\pi)\]Examples
>>> x1 = X.on(0) >>> cnot = X.on(0, 1) >>> print(x1) X(0) >>> print(cnot) X(0 <-: 1) >>> x1.matrix() array([[0, 1], [1, 0]]) >>> x1**2 RX(6.283) >>> (x1**'a').coeff {'a': 3.141592653589793} >>> (x1**{'a' : 2}).coeff {'a': 6.283185307179586}
- class mindquantum.gate.XX(coeff=None)[source]
Ising XX gate.
\[XX_\theta=\cos(\theta)I\otimes I-i\sin(\theta)\sigma_x\otimes\sigma_x\]More usage, please see
mindquantum.gate.RX
.
- class mindquantum.gate.YGate[source]
Pauli Y gate with matrix as:
\[\begin{split}H=\frac{1}{2}\begin{pmatrix}0&-i\\i&0\end{pmatrix}\end{split}\]More usage, please see
mindquantum.gate.XGate
.
- class mindquantum.gate.YY(coeff=None)[source]
Ising YY gate.
\[YY_\theta=\cos(\theta)I\otimes I-i\sin(\theta)\sigma_y\otimes\sigma_y\]More usage, please see
mindquantum.gate.RX
.
- class mindquantum.gate.ZGate[source]
Pauli Z gate with matrix as:
\[\begin{split}H=\begin{pmatrix}1&0\\0&-1\end{pmatrix}\end{split}\]More usage, please see
mindquantum.gate.XGate
.
- class mindquantum.gate.ZZ(coeff=None)[source]
Ising ZZ gate.
\[ZZ_\theta=\cos(\theta)I\otimes I-i\sin(\theta)\sigma_Z\otimes\sigma_Z\]More usage, please see
mindquantum.gate.RX
.
functional
The functional gates are the pre-instantiated quantum gates, which can be used directly as an instance of quantum gate.
functional |
gates |
---|---|
mindquantum.gate.CNOT |
|
mindquantum.gate.I |
|
mindquantum.gate.H |
|
mindquantum.gate.S |
|
mindquantum.gate.SWAP |
|
mindquantum.gate.X |
|
mindquantum.gate.Y |
|
mindquantum.gate.Z |
mindquantum.nn
Quantum neural networks operators and cells.
- mindquantum.nn.generate_evolution_operator(param_names, circuit: mindquantum.circuit.circuit.Circuit, hams=None)[source]
A method to generate a parameterized quantum circuit simulation operator.
- Parameters
circuit (Circuit) – The whole circuit combined with encoder circuit and ansatz circuit.
hams (Union[Hamiltonian, list[Hamiltonian]]) – The measurement hamiltonian.
- Returns
Evolution, A parameterized quantum circuit simulator operator supported by mindspore framework.
Examples
>>> import numpy as np >>> from mindspore import Tensor >>> import mindquantum.gate as G >>> from mindquantum import Circuit >>> circ = Circuit(G.RX('a').on(0)) >>> evol = generate_evolution_operator(['a'], circ) >>> state = evol(Tensor(np.array([0.5]).astype(np.float32))) >>> state = state.asnumpy() >>> state = state[:, 0] + 1j * state[:, 1] array([0.9689124+0.j , 0. -0.24740396j], dtype=complex64) >>> G.RX(0.5).matrix()[:, 0] array([0.96891242+0.j , 0. -0.24740396j])
- mindquantum.nn.generate_pqc_operator(encoder_params_names, ansatz_params_names, circuit: mindquantum.circuit.circuit.Circuit, hams, n_threads=1)[source]
A method to generate a parameterized quantum circuit simulation operator.
- Parameters
encoder_params_names (list[str]) – The list of parameter names for encoder circuit.
ansatz_params_names (list[str]) – The list of parameter names for ansatz circuit.
circuit (Circuit) – The whole circuit combined with encoder circuit and ansatz circuit.
hams (Union[Hamiltonian, list[Hamiltonian]]) – The measurement hamiltonian.
n_threads (int) – Number of threads for data parallelize.
- Returns
PQC, A parameterized quantum circuit simulator operator supported by mindspore framework.
Examples
>>> from projectq.ops import QubitOperator >>> from mindquantum import Circuit >>> import mindquantum.gate as G >>> encoder_circ = Circuit([G.RX('a').on(0)]) >>> ansatz_circ = Circuit([G.RY('b').on(0)]) >>> circ = encoder_circ + ansatz_circ >>> ham = G.Hamiltonian(QubitOperator('Z0')) >>> pqc = generate_pqc_operator(['a'], ['b'], circ, ham)
Operators
API Name |
Description |
Supported Platforms |
|
Inputs of this operation is generated by MindQuantum framework. |
|
|
A trainable Mindquantum layer. |
|
|
Evaluate a parameterized quantum circuit and calculate the gradient of each parameters. |
|
mindquantum.parameterresolver
Parameter resolver.
- class mindquantum.parameterresolver.ParameterResolver(data=None)[source]
A ParameterRsolver can set the parameter of parameterized quantum gate or parameterized quantum circuit.
By specific which part of parameters needs to calculate gradient, the PQC operator can only calculate gradient of these parameters.
- Parameters
data (dict) – initial parameter names and its values.
Examples
>>> pr = ParameterResolver({'a': 0.3}) >>> pr['b'] = 0.5 >>> pr.no_grad_part('a') >>> pr *= 2 >>> pr {'a': 0.6, 'b': 1.0} >>> pr.no_grad_parameters {'a'}
- no_grad()[source]
Set all parameters to not require gradient calculation.
Examples
>>> pr = ParameterResolver({'a': 1, 'b': 2}) >>> pr.no_grad() >>> pr.requires_grad_parameters set()
- no_grad_part(*names)[source]
Set part of parameters that not requires grad.
- Parameters
- Returns
Examples
>>> pr = ParameterResolver({'a': 1, 'b': 2}) >>> pr.no_grad_part('a') >>> pr.requires_grad_parameters {'b'}
- property para_name
Get the parameters name.
- Returns
list[str], Parameters name.
Examples
>>> pr = ParameterResolver({'a': 1, 'b': 2}) >>> pr.para_name ['a', 'b']
- property para_value
Get the parameters value.
- Returns
list[float], Parameters value.
Examples
>>> pr = ParameterResolver({'a': 1, 'b': 2}) >>> pr.para_value [1, 2]
- requires_grad()[source]
Set all parameters of this parameter resolver to require gradient calculation.
Examples
>>> pr = ParameterResolver({'a': 1, 'b': 2}) >>> pr.no_grad_part('a') >>> pr.requires_grad() >>> pr.requires_grad_parameters {'a', 'b'}
- requires_grad_part(*names)[source]
Set part of parameters that requires grad.
- Parameters
- Returns
Examples
>>> pr = ParameterResolver({'a': 1, 'b': 2}) >>> pr.no_grad() >>> pr.requires_grad_part('a') >>> pr.requires_grad_parameters {'a'}
- update(others)[source]
Update this parameter resolver with other parameter resolver.
- Parameters
others (
mindquantum.parameterresolver.ParameterResolver
) – other parameter resolver.- Raises
ValueError – If some parameters require grad and not require grad in other parameter resolver and vise versa.
Examples
>>> pr1 = ParameterResolver({'a': 1}) >>> pr2 = ParameterResolver({'b': 2}) >>> pr2.no_grad() >>> pr1.update(pr2) >>> pr1 {'a': 1, 'b': 2} >>> pr1.no_grad_parameters {'b'}
mindquantum.utils
Utils
- mindquantum.utils.bprint(strings: list, align=:, title=, v_around==, h_around=|, fill_char=)[source]
Print the information in block shape.
- Parameters
- Returns
list(str), Formatted string.
Examples
>>> title='Info of Bob' >>> o = bprint(['Name:Bob', 'Age:17', 'Nationality:China'], >>> title=title) >>> for i in o: >>> print(i) ====Info of Bob==== |Name :Bob | |Age :17 | |Nationality:China| ===================
- mindquantum.utils.mod(vec_in, axis=0)[source]
Calculate the mod of input vectors.
- Parameters
vec_in (Union[list[number], numpy.ndarray]) – The vector you want to calculate mod.
axis (int) – Along which axis you want to calculate mod.
- Returns
numpy.ndarray, The mod of input vector.
Examples
>>> vec_in = np.array([[1, 2, 3], [4, 5, 6]]) >>> mod(vec_in) array([[4.12310563, 5.38516481, 6.70820393]]) >>> mod(vec_in, 1) array([[3.74165739], [8.77496439]])
- mindquantum.utils.normalize(vec_in, axis=0)[source]
Normalize the input vectors based on specified axis.
- Parameters
vec_in (Union[list[number], numpy.ndarray]) – Vector you want to normalize.
axis (int) – Along which axis you want to normalize your vector.
- Returns
numpy.ndarray, Vector after normalization.
Examples
>>> vec_in = np.array([[1, 2, 3], [4, 5, 6]]) >>> normalize(vec_in) array([[0.24253563, 0.37139068, 0.4472136 ], [0.9701425 , 0.92847669, 0.89442719]]) >>> normalize(vec_in, 1) array([[0.26726124, 0.53452248, 0.80178373], [0.45584231, 0.56980288, 0.68376346]])
- mindquantum.utils.random_state(shapes, norm_axis=0, comp=True, seed=None)[source]
Generate some random quantum state.
- Parameters
- Returns
numpy.ndarray, A normalized random quantum state.
Examples
>>> random_state((2, 2), seed=42) array([[0.44644744+0.18597239j, 0.66614846+0.10930256j], [0.87252821+0.06923499j, 0.41946926+0.60691409j]])